A Novel Web Service Directory Framework for
Mobile Environments

Rohit Verma, Abhishek Srivastava
Department of Computer Science and Engineering,
Indian Institute of Technology Indore, India
Email: {phd12110101, asrivastava} @iiti.ac.in

Abstract—Mobile devices are evolving as a new computing
platform and a common means to provide access and process
digital information. In the move to achieve ubiquitous computing,
the role of mobile devices and web services cannot be understated.
Mobile devices are predominantly in use for accessing web
services. The same mobile devices are now becoming a feasible
option for small and medium size enterprises to host and provide
personalized web services to clients. The motivation being the
minimal infrastructure requirements and configuration costs.
Technology today enables the provision of web services over
hand-held mobile devices, realizing a web based service-oriented
architecture in a mobile environment. For this, an efficient service
discovery mechanism is required. It is difficult to adapt traditional
approaches of managing web service directory for mobile envi-
ronments; this is mainly due to the dynamic arrivals/departures
of mobile devices in network zones. In this paper, we propose
a model for web services in mobile environments to maintain
a service directory using the XMPP (eXtensible Messaging and
Presence Protocol). The proposed model enables mobile devices
to manage web service directory without requiring high-end
computers and high management cost. This paper presents
proposed architecture, design concept, system components and
workflow of the framework. Moreover, a comparative study of
the proposed approach and the traditional UDDI (Universal
Description, Discovery, and Integration) registry is presented.

Keywords: Mobile Web Services, Service Discovery, Ser-
vice Directory.

I. INTRODUCTION

Advancement in technology has made mobile devices an
important computing platform from merely being a commu-
nication device. Mobile devices such as smart phones, PDAs,
tablets have become a new way of information management
and enterprise productivity. Mobile devices are easily available
and are dispersed amongst crowd of people. Such mobile
devices have the potential to form a high computational re-
source pool, if harnessed appropriately. One way of efficiently
utilizing the capabilities of mobile devices is to use them
to host web services. To the best of our knowledge, mobile
devices are predominantly used for accessing web services but
little work has been done to enable hosting them [1] [2] [3].
There are several challenges in hosting web service over
mobile devices. These include and not limited to battery and
network constraints, limited computational power of mobile
devices, dynamic service registry management, dependency
on legacy web service architectures involving SOAP (Simple
Object Access Protocol), WSDL (Web Service Description
Language), UDDI (Universal Description, Discovery, and In-
tegration) [4].

With an increasing number of dynamic and personalized
web services hosted over mobile devices, discovery of such
services becomes an issue. The services on offer in such
environment tend to become ‘volatile’, owing due to the fact
that hundreds of mobile devices join and leave the system at
any instance of time. In such a scenario, centralized manage-
ment of web services through a service registry (e.g. UDDI
registry [5]) as is done conventionally is neither feasible nor
practical. Chief among the reasons for this is that a failure
of a mobile device (due to network outage, battery issues)
prior to notifying the centralized service registry increases the
probability of outdated information at the registry. Moreover
multiple mobile devices hosting web services arrive and depart
from the network. This would result in the need for frequent
updations of the central service registry.

The main objective of this paper is to facilitate service
oriented architecture [6] over mobile devices without the
involvement of high end server. Service oriented architecture
over mobile devices has several advantages: reduced cost, cost
sharing, resource aggregation, improved scalability, increased
autonomy, private and ad-hoc services, dynamic information
sharing. In the move to achieve service oriented architecture,
mobile devices should act as a service provider, service con-
sumer and service registry as well. In proposed work, we
focus on deploying service registry over mobile devices. The
big issue however is that traditional approaches of service
registries cannot be directly deployed over mobile devices.
The reasons: mobile devices are computationally less powerful,
network issues, battery life, the ‘mobility’ of mobile devices.
These limitations can make service registry hosted over mobile
devices prone to unexpected service outage and make them a
single point of failure.

In this paper, we therefore focus primarily on a technique to
facilitate service registry management in mobile environments.
We propose the use of XMPP (eXtensible Messaging and
Presence Protocol) for maintaining the service directory for
service discovery. The XMPP protocol is widely used for mes-
saging and chatting applications by virtue of features such as
contact management, contact search, presence leverage through
the network, server-less working for distributed application,
inherent XML (Extensible Markup Language) support. Our
approach is to manage service registry locally and providing
service directory in the form of a contact list as in messaging
application along with its availability status using XMPP.

The advantage of the proposed architecture is that it can
be used in a scenario where there is little or no preexisting
infrastructure. Examples of such scenarios are: war-front areas,

post-disaster relief management, dynamic environments (high-
way, ad-hoc networks, meeting areas), collaborative working
sites. Furthermore, the proposed architecture would provide
all service registry related information and operations using
mobile devices such as service discovery, service updates,
service availability. Mobile devices today are omnipresent in
the world and can provide services to other computational
devices, if not independently, in a collaborative manner. We
propose to use heterogeneous and loosely coupled mobile
devices in a collaborative manner to manage service directory
along with hosting web services. Our approach suggests that
each mobile devices should act as a web service provider
and service registry as well as may act as service consumer
(requester). The proposed architecture has potential to enable
new/small businesses to provide services over mobile devices
to customers with minimal dependency on infrastructure. We
propose to use existing protocols and technologies with minor
modifications for providing web services registry service over
the mobile devices. In this paper, we compare and contrast pro-
posed approach and traditional UDDI approach for managing
service registry from the perspective of mobile devices

The rest of the paper is organized as follows. Section II
is the related work section. Section III presents the proposed
architecture and inline comparison with UDDI service registry
model, followed by IV briefly talks about the various appli-
cation scenarios of the proposed system. Finally Section V
concludes the paper with a brief discussion on future work.

II. RELATED WORK

Mobile computing has evolved and become popular in the
last few years. It has today become a means for anytime-
anywhere computations. Mobile devices are commonly used
for simple computations, accessing the Internet, checking
email, etc. Accessing web services over mobile devices is also
no exception. Service providers target mobile device users and
provide them a diverse range of web services.

With the parallel growth in mobile technology and net-
working technologies, web services for mobile devices is
becoming a new paradigm. The idea behind mobile web
services is to enable mobile devices to host, access, provide
and integrate web services and information. Substantial work
has been done on enabling mobile devices to access web-
services [7] [8] [2].

On the other hand, however, hosting web-services over
mobile devices is a relatively new area of research. The
potential of mobile web services was first discussed by Berger
et al. [9]. Work has been done on hosting web services over
mobile devices [10] [1] [2] [11] based on SOAP as well as
REST [3] [12]. AlShahwan et al. [13] provides a comparison
between the SOAP and REST framework from the point of
view of utilizing em in mobile environments.

Most of the work done on mobile web services utilizes a
standard directory system with UDDI for web service discov-
ery. A few group have explored fresh ideas for web service
discovery in mobile environments.Recent work by Elgazzar et
al. [14] discuss about the concept of personalized web service
discovery based on the use of context information and user
preferences. However they made use of existing WSDL doc-
uments for context-aware web service discovery. Al-Masri et

al. [15] propose a device aware service discovery mechanism,
MobiEureka, for mobile environments. MobiEureka make use
of input keywords and recommends relevent mobile services
to the client devices. Sapkota et al. [16] discusses use of
shared memory for web service discovery. Their work provide
a shared memory for web services to publish their service
descriptions and make it available for service discovery. This
approach could be adopted for mobile devices. The goal of
our paper is to propose a novel approach for managing the
service directory for web services hosted over mobile devices.
This would enable mobile devices to manage service registries
on their own, drastically reducing the cost and dependency on
infrastructure. This could potentially also help in providing
services in dynamic networks such as vehicular networks,
mobile ad-hoc networks (MANETS).

XMPP stands for Extensible Messaging and Presence Pro-
tocol [17] [18]. It is an open Extensible Markup Language
(XML) based protocol for near-real-time messaging, presence,
and request-response services. XMPP is the formalization of
the protocol developed by the Jabber open-source community
in 1999. As per RFC 3920 [17], XMPP is the protocol for
streaming XML elements in order to exchange structured in-
formation between two network endpoints in real time. XMPP
is used predominantly in instant messaging (IM) applications.
Various extension for XMPP have been proposed over time
such as extension for serverless mode [19], service discovery
mode [20], ad-hoc command support (ad-hoc session sup-
port) [21], SOAP support for web services [22]. Bernstein [23]
proposed to use XMPP for intercloud topology, security.
authentication and service invocations, this work is closely
resembles to ours. However, our work focuses on the directory
management in mobile based service oriented architecture. We
focus on managing service directory in distributed manner on
resource constrained mobile devices.

We propose the use of XMPP for providing the web
service directory over mobile devices. XMPP is widely used
for messaging applications on mobile devices and has proven
to be efficient. Features of XMPP such as presence, contact
management (that indicate the communication status of part-
ners) are proposed for maintaining updated service directory
information in a distributed manner. XMPP would be used
to provide web services on top of existing protocols. To the
best of our knowledge, this is the first instance where an
architecture is being proposed for web services directory over
mobile devices using XMPP.

III. ARCHITECTURE

Mobile device hosted web services mainly exist in peer-to-
peer, personal or crowdsourced environment where the hosts
are personal mobile devices belonging to the ‘crowd’. The
focus of this paper is on the problem of dynamic service dis-
covery and publishing in such volatile environments. Protocols
and technologies from W3C such as SOAP, UDDI, WSDL
are ill suited to such dynamic environments. This work is
appropriate for cooperative and personal web services hosted
over mobile devices in a local area. We now discuss the
design concept and architecture components of the proposed
architecture:

A. Design Concept:

The proposed architecture for managing the service direc-
tory maintains a list of available mobile web service providers
along with their respective availability information. The archi-
tecture is based on a publish/subscribe system that exhibits the
availability and requests for a web service. XMPP is used, as it
is generic, has an open and extensible architecture. Further, it
is an instant messaging protocol, that uses XML for supporting
request and responses. XMPP is part of the application layer
and is built on-top of TCP/IP (Transmission Control Protocol /
Internet Protocol), hence is lightweight as compared to SOAP-
based protocols such as UDDI. XMPP is therefore suitable for
mobile devices that have resource constraint issues.

Moreover UDDI provides a tightly coupled architecture
which is less suitable for mobile environment. UDDI architec-
turel [5] has UDDI data entities (businessEntity, businessSer-
vice, bindingTemplate, tModel, publisherAssertion, subscrip-
tion), various UDDI services and API sets, UDDI Nodes
for supporting node API set, UDDI Registries. This base
architecture makes UDDI difficult to host on mobile and
resource constraint devices. Our architecture defined operation
of web services in the form of XMPP stanzas or messages
while UDDI makes use of WSDL.

AlShahwan et al. [13] and Srirama et al. [24] show that
RESTful web services are relatively more suitable for mobile
environment. This fits in well with our proposal for offering
a directory service as both REST and XMPP utilize TCP
and HTTP for communication. The proposed model facilitate
service registry deployment over mobile devices. However
our approach blends well with any type of web service
implementation either SOAP based or REST based. As model
would only provide web service directory service, subsequent
negotiation between service consumer and service provider
(which may be specific to type of service) would be peer-
to-peer. This service negotiation is out of the scope of this

paper.

XMPP, as per RFC 3920, was designed as a client-server
protocol. However, the XMPP extension XEP-0174 supports
serverless messaging suitable for WiFi and ad-hoc technolo-
gies. This could be useful for private and ad-hoc web services
for dynamically publishing and discovering web services.
Our architecture consist of mainly two types of services for
managing the decentralized service registry:

1) Advertising Service: This service (similar to the ser-
vice present in the central service registry) advertise
hosted service. This service is present at all the mo-
bile devices hosting any web service. For advertising,
this service make use of XMPP roster management.

2) Query Responder Service: This service responds to
any incoming service discovery request by other
mobile devices. This service keeps listening for all
query request and responds to them by passing the
hosted web service parameters needed for accessing
the same.

In the proposed architecture each mobile device may act as
a service provider as well as a service consumer. As a service
consumer it would find web services from service roster and
subsequently invoke the web service after negotiating with

provider. As a service provider mobile devices would host
services and would publish their hosted services with the
XMPP service roster (as shown in Fingure 1).

Service S);mpcpe J
. ice
Registry . Rosteri_
z”" ‘\\
< - .
2 - N
S
& s %
<E & b
P Q"z \\
2
P
e) 3,
. < N

Service o2
Provider -)
Bind

Mobile Device

= Service
>
Consumer

Mobile Device

Fig. 1. Service Oriented Architecture Triangle

B. Components:

The main primitive components of the architecture shown
in Figure 2:

XMPP |- Web Web | <= XMPP
: Service Service _ Engine
Engine Roster Roster 8
I Query/ y—/] I

Information
Registry Query —
Agent Agent .

Registry
Agent

H
'
I
> 0
@ S
H
a2

@2ea10]
|eusaix3

T
o9

Hosted Web Services Hosted Web Services

Wigbile Dévice MobileBevice

Fig. 2. Service Discovery Architecture

e Registry Agent: This component does the registration
on the service registry for the hosted mobile web
services. Web services send requests to the registry
agent and this agent forwards the request to the XMPP
engine. Every time a web service or hosted mobile
device becomes unavailable, the registry agent gets
notified. Furthermore this agent forwards the status to
the XMPP engine for updates in the roster.

e Query Agent: This component accepts and processes
the queries from other mobile devices. Following are
the main functionalities of this agent:

o Query Processing: Incoming queries are ac-
cepted and processed. Incoming queries seek
mobile web services and their availability sta-
tus.

o Query Generation: When the native mobile
device (XMPP engine) needs to know the
status of a remote web service for the web
service roster update, the query agent generate
the query on behalf of the mobile device.

The query agent has an external interface. These inter-
faces are the point of contact for any communication
from external mobile device. Query generated are sent
to the external mobile device using these interfaces
and query are responded back through the same.

Query responder service, as discussed in III-A, run
by this component.

e XMPP Engine: This component is the heart of the
architecture. This manages web service roster or di-
rectory of the web services in the vicinity along with
the availability information. Availability information
shows whether a web service is available or not at
present moment. This is one of the important feature
of proposed architecture, as availability of a web
service hosted on mobile device is always uncertain,
due to dynamic nature of mobile devices. XMPP en-
gine might generate request for remote mobile device
(seeking for the status of web service hosted at it)
and send it to the query agent. Advertising service as
discussed in previous subsection manages web service
roster using XMPP engine.

We use the term mobile devices for any smart mobile
phone, PDA, tablet which is capable of hosting and providing a
web service. Dynamic nature of these mobile devices could be
due to unpredictable mobile battery, varying nature of mobile
signals, geographical mobility of these devices.

C. System Anatomy:

This subsection presents technical details of the
architecture presented in III-B.
Jabber Identifiers:

Each mobile device within the network is

addressed by a Jabber Identifier (JID). JID is similar
to an email address and is uniquely addressable:
localID@domainID/resourceID. The locallID
of the mobile device for JID could be chosen using an
ad-hoc networking technology such as multi-cast domain
name system as suggested in RFC 6762, dynamic host
auto configuration IP range as suggested in RFC 5735 and
3927. The domainID is fixed for the local network. The
resourcelID identifies a web service hosted on the mobile
device. The 1ocalID depicts the type of the web service.
This enables mobile devices on the network to look out
for only ‘interested” web services. It is analogous to the
chat groups in chatting applications, where like people with
common interests can chat with each other. For example,
a mobile device in the “local.mobile” domain hosting a
web services for “weather” updates for “XYZcity” could
have weather@local.mobile/XYZcityWS as its JID.
Determination and delivery at the addresses are done as per
the XMPP core RFC 3920. JID identifies XMPP engines and
query agents of mobile devices distinctly.

Communication:

The proposed model makes use of XMPP [17], [25] stanzas
for communication. These stanzas comprise XML based dis-
crete units of structured information sent over XML streams.
As shown below, each stream starts with an ‘xmlns’ names-
pace declaration <stream:stream xmlns:stream=
http://etherx. jabber.org/streams />. There are
mainly three stanza types used in the architecture: <message
/>, <presence />, <iqg /> (as shown in Figure 3).

#
w
o
H
o
g
¥

<presence> |
<show/> |
</presence> |

<message to='foo'> |
<body/> |
</message> |

| <ig to='bar'> |
1 <guery/> 1
| </ig> |

Fig. 3. XMPP stanzas

<xs:schema

xmlns:xs="http://www.w3.0rg/2001
/XMLSchema’

targetNamespace='http://etherx.
Jjabber.org/streams’

xmlns='http://etherx. jabber.org/
streams’ >

Message stanza is the basic XMPP stanza that works on
the “push” mechanism. This stanza pushes information from
one entity to another entity. For the purpose of managing and
updating the service directory the message stanza type that
is used is called headline . The headline type message
expects no reply and is suitable for pushing broadcast content
to various devices. A common use of headline type message
stanza is as an envelope for service description to manage the
service directory.

Presence stanza is used to multi-cast the presence informa-
tion of a mobile device. Each presence stanza includes brief
information on the hosted service (status message), along with
its availability information. We use ‘Online’ and ‘Offline’ as
the primitive presence types in the proposed architecture. The
online or available status is broadcast when the web service
hosted over the mobile device is available. Similarly offline
or unavailable is used when the web service is not available.
The status of a web service hosted over the mobile device
is propagated through the registry agent to the XMPP engine
and this reflect on the service roster. XMPP enables obtaining
selected updates from selected mobile devices.

1Q stanza is short for Info/Query stanza. It is based on a
request-response mechanism and guarantees a response to a
query. The data content request in the 1Q stanza is of type
get and is similar to the HTTP GET method. The result of
the query is of type result. Any communication involving
query agents primarily makes use of the IQ stanza. These play
an important role in getting information from other mobile
device that host web service.

D. System Workflow:

The workflow of the proposed architecture is presented
here. A comparison with UDDI is also presented. The main
functions of the architecture are as follows:

Web Service Registration:

The hosted web service sends a request to the registry
agent for registration. The registration agent sends a request
to XMPP engine. Request for registration is an IQ stanza as
shown below:

<!-- Request for registration ——>
<ig type='get’ id=’regreql’>

<query xmlns=' jabber:iq:register’/>
</ig>

<!-- Response from XMPP engine ——>
<ig type='result’ id='regreql’>
<query xmlns=’ jabber:iqg:register’>
<servicename/>
<provider/>
<owner/>
</query>
</ig>

<!—-— Registration Details -—>

<ig type='set’ id=’regreqg2’>

<query xmlns=’jabber:iq:register’>
<servicename>BinConWS</servicename>
<provider jid="calculator@testenv.mobile

/ProgrammerCalc/">

<owner>Programmer Calc Ltd</owner>
</query>

</ig>

<!—-— Registration Success response ——>
<ig type=’result’ id=’"regreqg2’>

<query xmlns=' jabber:iq:register’/>
</ig>

After the completion of the registration process the web
service is updated to the service roster. This roster is cooper-
atively updated with other devices. The registration process
in traditional UDDI is done using the publisher APIs set
exposed by the UDDI, such as save_service, save_business,
save_binding, save_t_model. These APIs are used to save
detailed information on the web service, which may not be
necessary in case of mobile based web services. Moreover this
information would tend to become heavy for mobile devices
to process or transport.

Figure 4 shows the information stored in a typical UDDI
registry [4]. The information is produced by the web service
provider to the UDDI registry through publisher APIs (The
information is transported as XML tags, we are not showing
the XML for the UDDI structure owing to space constraints
here. Interested readers may refer: http://goo.gl/cn8VaP).
Deploying such a UDDI registry over a mobile device would
tend to become heavy owing to limited computational power
and network constraints. The UDDI registry would also lag in
managing the dynamic nature of mobile devices.

Web Service Discovery:

Web service discovery in the proposed model is meant to
suit machines as well as the humans. Humans can search and
select a web service from the service roster, which is similar
to a buddy list in an Internet messaging application. The web
service directory is managed in the form of a roster along
with the presence/availability information on the services. This

businessEntity:
Business Key
Publisher Name
Discovery URLs
Description
Contacts
Identifier
Category

[——h
businessService:
Service Key
Name
Description
LY Category
—1
bindingTemplate: tModel:
Binding Key v || tModel Key
Description 0 Name
Access Point Description
Hosting Redirector _.--=" || OverviewDoc

Category
T tModel Instance Detail

Identifier
Category

Fig. 4. UDDI Registry Entry

feature of presence information is pertinent to dynamic mobile
environments. Multiple mobile web service providers join and
leave the network dynamically. We therefore propose a web
service roster on each device. This enables the mobile devices
to perform service discovery locally. If information on a web
service is not available in the local roster, the discovery request
can be passed to the other mobile devices via the query agent.
This communication takes place as per XEP-022 [26].

We propose two types of service discovery: Direct Discov-
ery and Category based Discovery. These service discoveries
are performed using the IQ stanza of XMPP. Direct discovery
is performed by parsing the local roster and is based on
the required web service from a provider. An example of
direct discovery is discovering the web service in local roster
providing temperature conversion from Celsius to Fahrenheit.
Category based discovery for a web service is performed, when
a list of available service of a particular category is required.
Following is the example of category based discovery. It shows
a directory roster retrieval related to a ‘calculator category’.

<!-- Request for discovery ——>

<ig from="consumer@testenv.mobile/new"

id="newl23"

to="calculator@testenv.mobile"

querydesc="Roster List for Calculator"

type="get">

<query xmlns="http://jabber.org
/protocol/disco#items"/>

</ig>

<!-- Discovery Response with three items——>
<ig from="calculator@testenv.mobile"
to="consumer@testenv.mobile/new"
id="newl23"
querydesc="Roster for Calculator"
type="result">
<query xmlns="http://jabber.org
/protocol/disco#items">
<item
jid="calculator@testenv.mobile/
ArithmeticCalc"
WSDesc="Simple Arithmetic

Calculator"
WSProvider="ArithmeticCalc.
testenv.mobile">
<group>calculator</group>
</item>
<item
jid="calculator@testenv.mobile/
ScientificCalc"
WSDesc="Scientific Calculator WS"
WSProvider="ScientificCalc.
testenv.mobile">
<group>calculator</group>
</item>
<item
jid="calculator@testenv.mobile/
ProgrammerCalc"
WSDesc="Programmer Calculator WS"
WSProvider="ProgrammerCalc.
testenv.mobile">
<group>calculator</group>
</item>
</query>
</ig>

<!—-— Response for direct service discovery
request from Programmer Calc WS ——>
<ig from="calculator@testenv.mobile/
ProgrammerCalc"
id='"new234’
to="consumer@testenv.mobile/new"
type='result’>
<query xmlns='http://jabber.org
/protocol/disco#items’ >
<item jid="calculator@testenv.mobile
/ProgrammerCalc/BinConvWs"
WSDesc="Binary Converter Service"/>
<item jid="calculator@testenv.mobile
/ProgrammerCalc/GCDWS"
WSDesc="GCD calculation"/>
</query>
</ig>

Once the web service consumer has discovered the appropri-
ate provider, the consumer receives the binding information
from the provider itself. Web service discovery in a UDDI
registry is done via public inquiry APIs of the UDDI, such
as find_service, find_binding, find_business, find_tModel. The
service discovery is performed centrally by the UDDI registry
server, which requires high computational capability. This is
because the consumer requests the UDDI registry server which
in turn does the query search centrally and responds to the
consumer with the results. The complexity and structured
nature of the UDDI data structure as shown in Figure 4 further
makes searching difficult. Processing a discovery query over a
mobile device using UDDI would therefore be cumbersome.
Moreover UDDI registries make use of deployed database
systems. (For example Apache jUDDI makes use of Derby
database (as packaged component) for managing and providing
service directory.) These database systems would drastically
slow down the mobile devices. Though traditional UDDIs
enable consumers to query the registry and are effective in
centralized system, they are ill suited to mobile environments.

Web Service Binding:

Web service binding information is necessary to use a
particular web service. It includes the technical information
on a web service, such as the end point, required parameter
values, return type. In proposed model, message stanza is
used for this purpose. Once a web service provider is dis-
covered by the service consumer, the consumer retrieves the
binding information from the provider. This approach enables
management of the service directory independent of the type
of service implementation (SOAP or REST). An example
of the binding information from a service provider (calcula-
tor @testenv.mobile/ProgrammerCalc/BinConvWS) to the ser-
vice consumer (consumer @testenv.mobile/userl) is as follows.

<message
from="calculator@testenv.mobile
/ProgrammerCalc/BinConvWS"
to="consumer@testenv.mobile/userl"
id="WSDescpl">
<body>
<overview>
Programmer Calculator WS
</overview>
<provider>
programmercalc.testenv.mobile
</provider>
<owner>123abc</owner>
<binding type="SOAP1.1"
transport="HTTP"
Port="80" />
<method m_id="M1"
name="IntToBin"
methoddesc="Convert supplied
Integer to Binary"
endpoint="http://programmercalc
.testenv.mobile/
BinConvWS/IntToBin"
parameter="Integer"
returntype="String">
<method m_id="M2"
name="BinToInt"
methoddesc="Convert supplied
binary to integer"
endpoint="http://programmercalc
.testenv.mobile/
BinConvWS/BinToInt"
parameter="String"
returntype="Integer">
</body>
</message>

The above description is specific to a service and would
vary between web services. In the above example minimum in-
formation is included, more details could be included. However
this information is between the service provider and the service
consumer. The message stanza provides technical information
for binding. Subsequently WSDL or WADL (Web Application
Description Language) document can be exchanged directly
between service consumer and service provider. This exchange
is out of the scope of this paper.

In the case of a UDDI registry, the service binding infor-

mation is retrieved from UDDI registry server using t_model
and WSDL documents. Moreover, several service providers
do not register with UDDI registries due to the complexity
involved (or due to unavailability of global UDDI registry).
Global UDDI registries are also not updated owing to the fact
of broken SOA triangle [27]. Hence, as a general practice,
consumers/developers performs service/binding information
discovery via web search engine with query parameter for
filetype as wsdl (for SOAP based web services) or wadl (for
REST based web services) for an unknown and new web
service. Some query may result in multiple technical and
binding documents. Selection of an appropriate web service
may need human intelligence and analysis. Furthermore result
selection may be dependent on ones choice and analysis.
Besides, retrieval of wsdl/wadl document from service provider
is also a common practice. Our architecture eases mobile
web service consumers from manual search and analyzing
multiple non-relevant binding information of various web
services. Moreover, discrete web services from new service
provider are presented at a common platform. Web service
consumer/developer can search services from the service roster
directly or in category.

Presence Notification:

This is one of the novel features of the proposed architec-
ture. The service roster manages presence information for a
service. This presence information is manged for each Jabber
ID. This jabber ID may identify a web service or service
provider or web service category. The presence information is
similar to the availability information in an Internet messaging
application. The presence is shown as ‘Online’ or ‘Offline’ as
discussed earlier. An example of a presence stanza used to
notify presence information is shown below.

<presence
from="calculator@testenv.mobile
/ProgrammerCalc/"
to="calculator@testenv.mobile">
<show>available</show>

<status>

"Programmer calculator WS"

</status>
</presence>

Each category of service in the above example
“calculator @testenv.mobile” manages the presence
and status information of the web services (calcula-
tor @testenv.mobile/ProgrammerCalc/). This information

reaches other provider’s roster through a query agent as
discussed in [28].

Roster Sharing:

Roster sharing is required for managing the latest infor-
mation on services in rosters of various mobile devices. The
message stanza is used to perform roster sharing. Message
stanzas are exchanged for: Addition, Deletion, Modification
of service items to service roster. Extension of XMPP [29]
suggests the use of an attribute “action” with the value as add
or delete or modify. The message stanza has an x tag, which
contains items for sharing. Following is a message stanza
example exchanged for roster sharing between mobile devices.

<message from="calculator@testenv.mobile
/ProgrammerCalc"
to="calculator@testenv.mobile
/ScientificCalc">
<body>Roster to add</body>
<x xmlns="http://Jjabber.org/protocol
/rosterx">
<item
action="add"
jid="calculator@testenv.mobile
/ProgrammerCalc/BinConviWS"
WSDesc="Binary Converter Service">
</item>
<item
action="add"
jid="calculator@testenv.mobile
/ProgrammerCalc/GCDWS"
WSDesc="GCD calculation">
</item>
</x>
</message>

E. SETUP

The above comparisons were done in restricted lab environ-
ment. For the UDDI registry server jUDDI [30] version 3.1.5
was used. We then deployed UDDI server on a Cent OS Linux
Server 6.2 with Apache Tomcat version 6.0.26. This server
has Java run time environment version 1.7.0_45. SoapUI [31]
version 4.6.3 was deployed on a Windows 7 machine for
invoking and inspecting web services offered by UDDI, this
simulated web service consumer behavior.

For the XMPP server we chose Apache Vysper [32] from
several available options such as tigase, openfire, ejabberd. The
reason being that Apache Vysper and Apache jUDDI are from
the same foundation. This helped in the initial benchmarking.
The other reason is that Apache Vysper was able to readily
embedded into the existing set of web services. For the XMPP
server and web service we used the Java run time environment
version 1.7.0_45.

IV. APPLICATIONS

The proposed architecture can have several applications. It
would enable mobile devices to more efficiently host web
services and publish information on these using XMPP. A few
scenarios where this architecture would come in handy are:

o War front activities: The war-front is a place where it
is difficult or even impossible to access or setup fixed
infrastructure for hosting web services. The proposed
architecture would be very handy in such locations.
With multiple devices present in such areas hosting
secure web services for enemy troop location, discrete
terrain map, war front update, armory updates, com-
municating war instructions could be made possible.
There is a greater chance of mobile devices enter-
ing or leaving the network frequently and randomly.
The proposed architecture could provide web service
availability information with ease in such scenario.
Moreover registering a new mobile device is fast and
with minimum hassle.

Disaster relief: Our architecture could prove useful
in places where existing infrastructure has been de-
molished by disaster or natural calamity. It could be
used by the disaster response team or local volunteers,
who are hosting web services for disaster manage-
ment, relief plans update, damage study etc. using
their mobile devices. The proposed architecture could
help directory in providing a flexible yet trustworthy
information on web services in the vicinity.

Custom web service for any computation: Small or
new business organizations could potentially benefit
from this architecture by being able to publish their
hosted web services with minimal infrastructure and
minimal costs. The proposed architecture could enable
new businesses to provide a feed of their working and
web services to customers.

V. CONCLUSION

In this paper we proposed a service discovery approach that
make use of XMPP (Extensible Messaging and Presence Pro-
tocol) for web services hosted over mobile devices. The web
service discovery mechanisms applied to traditional services
such as UDDI and other centralized registry systems not
fit for unreliable and dynamic mobile environments. Hence
we proposed a new architecture for managing web service
directories using XMPP. XMPP has been shown to be effective
in managing the service directory, sending service updates, and
service availability information. Service availability awareness
is crucial in mobile environments as the network is nomadic
and dynamic. The proposed architecture works on top of
existing networking protocols and works well with available
web service protocols. We intend to extend our research and
explore possibilities in the following areas: personalized and
subscription based web service rosters, QoS aware web service
directory in decentralized environments.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

K. Mohamed and D. Wijesekera, “A lightweight framework for web
services implementations on mobile devices,” in Mobile Services (MS),
2012 IEEE First International Conference on, 2012, pp. 64-71.

M. Adacal and A. B. Bener, “Mobile web services: A new agent-based
framework,” Internet Computing, IEEE, vol. 10, no. 3, pp. 58-65, 2006.

C. Riva and M. Laitkorpi, “Designing web-based mobile services
with rest,” in Service-Oriented Computing-ICSOC 2007 Workshops.
Springer, 2009, pp. 439-450.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications, 1st ed. Springer Publishing
Company, Incorporated, 2010.

Oasis, “Uddi version 3.0.2 spec technical committee draft [last accessed
january 30, 2014] http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf,
2004.

M. P. Papazoglou, “Service-oriented computing: Concepts, character-
istics and directions,” in Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth International Conference on.
IEEE, 2003, pp. 3-12.

A. B. Mnaouer, A. Shekhar, and Z. Y. Liang, “A generic framework for
rapid application development of mobile web services with dynamic
workflow management,” in Services Computing, 2004.(SCC 2004).
Proceedings. 2004 IEEE International Conference on. 1EEE, 2004,
pp. 165-171.

S.-T. Cheng, J.-P. Liu, J.-L. Kao, and C.-M. Chen, “A new framework
for mobile web services,” in Applications and the Internet (SAINT)
Workshops, 2002. Proceedings. 2002 Symposium on. 1EEE, 2002, pp.
218-222.

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]
(32]

S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghunath, “Web
services on mobile devices-implementation and experience,” in Mobile
Computing Systems and Applications, 2003. Proceedings. Fifth IEEE
Workshop on. 1EEE, 2003, pp. 100-109.

S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provi-
sioning,” in Telecommunications, 2006. AICT-ICIW’06. International
Conference on Internet and Web Applications and Services/Advanced
International Conference on. 1EEE, 2006, pp. 120-120.

R. Tergujeff, J. Haajanen, J. Leppanen, and S. Toivonen, “Mobile soa:
service orientation on lightweight mobile devices,” in Web Services,
2007. ICWS 2007. IEEE International Conference on. IEEE, 2007,
pp. 1224-1225.

L. Li and W. Chou, “Cofocus-compact and expanded restful services
for mobile environments.” in WEBIST, 2011, pp. 51-60.

F. AlShahwan and K. Moessner, “Providing soap web services and rest-
ful web services from mobile hosts,” in Internet and Web Applications
and Services (ICIW), 2010 Fifth International Conference on. IEEE,
2010, pp. 174-179.

K. Elgazzar, P. Martin, and H. S. Hassanein, “Personalized mobile web
service discovery,” in Services (SERVICES), 203 IEEE Ninth World
Congress on. 1EEE, 2013, pp. 170-174.

E. Al-Masri and Q. H. Mahmoud, “Mobieureka: an approach for en-
hancing the discovery of mobile web services,” Personal and Ubiquitous
Computing, vol. 14, no. 7, pp. 609-620, 2010.

B. Sapkota, D. Roman, S. R. Kruk, and D. Fensel, “Distributed web
service discovery architecture,” in Telecommunications, 2006. AICT-
ICIW’06. International Conference on Internet and Web Applications
and Services/Advanced International Conference on. IEEE, 2006, pp.
136-136.

P. Saint-Andre, “Rfc 3920: Extensible messaging and presence proto-
col (xmpp): Core,” Internet Engineering Task Force (IETF) proposed
standard, Tech. Rep., 2004.

P. Saint-Andre, “Rfc 6120: Extensible messaging and presence proto-
col (xmpp): Core,” Internet Engineering Task Force (IETF) proposed
standard, Tech. Rep., 2011

P. Saint-Andre, “Xep-0174: Serverless messaging,” Standards track,
XMPP Standards Foundation, 2008.

J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre, ‘“Xep-0030:
service discovery,” 2008.

M. Miller, “Xep-0050: Ad-hoc commands,” 2005.
F. Forno and P. Saint-Andre, “Xep-0072: Soap over xmpp,” 2005.

D. Bernstein and D. Vij, “Intercloud directory and exchange protocol
detail using xmpp and rdf,” in Services (SERVICES-1), 2010 6th World
Congress on. 1EEE, 2010, pp. 431-438.

S. N. Srirama, C. Paniagua, and J. Liivi, “Mobile web service provision-
ing and discovery in android days,” in Proceedings of the 2013 IEEE
Second International Conference on Mobile Services. IEEE Computer
Society, 2013, pp. 15-22.

E. P. Saint-Andrew, “Rfc 3921: Extensible messaging and presence pro-
tocol (xmpp): Instant messaging and presence, october 2004,” Internet
Engineering Task Force (IETF) proposed standard, Tech. Rep., 2004.
P. Hancke and D. Cridland, “Bidirectional server-to-server connections,”
2012.

A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards recovering the broken soa triangle: a software engineering
perspective,” in 2nd international workshop on Service oriented soft-
ware engineering: in conjunction with the 6th ESEC/FSE joint meeting.
ACM, 2007, pp. 22-28.

P. Millard, P. Saint-Andre, and R. Meijer, “Xep-0060: Publish-
subscribe,” Jabber Software Foundation, 2006.

P. Saint-Andre, “Xep-0144: Roster item exchange,” 2005.

“Apache juddi [last
https://juddi.apache.org/.

accessed january 30, 20141,
“Soapui [last accessed january 30, 2014],” http://www.soapui.org/.

“Apache vysper [last accessed 20141,
http://mina.apache.org/vysper-project/.

january 30,

