
Utilizing the Waiting-time Criterion for Selecting Services in a Composition Scenario

Abhishek Srivastava, Paul G. Sorenson
Department of Computing Science

University of Alberta
Edmonton, Canada

{sr16, paul.sorenson}@ualberta.ca

Abstract—Service composition is an effective practice to
perform complex tasks through varied configurations of simple
services. An issue that often arises in such a set-up is the
selection of the best service from a group of functionally
equivalent ones to cater to each of the various functionalities
of the composite application. Previous effort in this direction
incorporates utilizing the Quality of Service (QoS) attributes
of the services to pick out the best one of the lot. This
paper presents a technique to select the optimal service for
composition using the average waiting time attribute of the
services. The service selected is the one that has the smallest
value of the average waiting time. Concepts from queueing
theory have been borrowed and customized to estimate the
waiting time values of the candidate services. Experiments have
been performed wherein selection results using the proposed
technique are compared with the selections that are made by
simulating an actual scenario and computing the waiting time
by observation.

I. INTRODUCTION

Service composition refers to the practice of forming
composite applications to get some useful work done using
groups of simple service components [1]. The constituent
service components each perform their respective tasks,
and putting these together a larger more complex task
gets done. A common example of service composition is
the ‘trip-planner’ application. The trip-planner application
is a composite application which may comprise a flight-
booking service, a hotel-booking service, a taxi-booking
service, an integrated payment service etc. Each of the
service components does a simpler task and together the
more complex task of planning all aspects of the trip gets
done.

With most countries in the world swiftly moving towards
a service based economy [2] [3], service composition is
becoming a more common practice by the day. This is a
logical development as service composition enables effective
re-use of existing service components. Customers stand to
gain in this set-up in terms of the increased choices of
applications at their disposal and have the liberty to demand
‘tailor-made’ applications to exactly cater to their respective
requirements. Service providers also gain by virtue of the
‘malleability’ that the service composition practice lends to
the process of service delivery.

In spite of the aforementioned advantages, the service

composition practice is not without its issues. One of the
issues that is dealt with in our research, is that of selecting
the best components for the task at hand. With a large
number of service components being available, every task
that needs to be performed as part of the composite appli-
cation has a number of candidate services. For example, in
the trip-planner application mentioned earlier, the task of
flight-booking could be performed by any of a number of
services, viz. ‘Expedia’ [4], ‘travelocity’ [5], ‘Flight Centre’
[6]. Selecting the best service from the available functionally
equivalent candidate services is non-trivial. Attempts in the
past at selecting the best service from a set of functionally
equivalent ones have been made utilizing the ‘Quality of
Service’ (QoS) attributes of the services in question [7], [8],
[9]. The services in question are ranked on the basis of
one or more QoS attributes using various procedures and
the highest ranked service component is selected for the
respective task.

In this paper, the ‘average waiting time’ attribute of the
service components is utilized to select the best service for
the task. The average waiting time of a service is the time
that a request that is being serviced by the same has to wait
on an average before being serviced. The waiting has to be
done because the service is busy servicing another request
and possibly other requests waiting in a queue before the
request in question. The smaller the average waiting time,
the more desirable is the service. The best service among
the functionally equivalent candidate services is therefore
the one with the smallest value of the average waiting time.

To compare service components on the basis of their
respective average waiting time values, we borrow simple
concepts from Queueing Theory [10]. Approximate waiting
time values are obtained for the candidate service compo-
nents for each task, and the one with the smallest waiting
time value is selected. An important point to note is that
the queueing theory concepts used in this work have been
derived under the assumption that the queueing system is in
a ‘steady-state’. The steady-state in a queueing system is a
condition when the probability of the queue having a certain
number of requests is constant. Attaining the steady-state
in a dynamic service composition environment is however
usually not possible. Therefore, the concepts borrowed have
been customized to cater to a non steady-state environment.



The remainder of this paper is structured as follows.
Section 2 is the related work section where papers that have
presented techniques to minimize waiting-time in the past
have been discussed. These techniques are not necessarily in
the context of service composition. Section 3 is a description
of the service domain that has been used in our research,
within which the service composition takes place. Section 4
presents the proposed technique for calculating the average
waiting time of the candidate services. It first describes
the queueing theory concepts borrowed and subsequently
describes the customization of the borrowed concepts to
cater to the service domain being used. Section 5 consists of
a description of the experiments conducted to validate the
proposed technique and also consists of some of the results
of the experiments. Finally, section 6 concludes the paper.

II. RELATED WORK

The related work included in this section is not necessarily
in the context of service composition. However, all the work
discussed here is related to the waiting-time criterion being
used for service selection and performance modification.

Ismail et al. [11] tackle the issue of reducing the waiting-
time of a collaborative project by selection of collaborating
partners in a manner that the idle time of one coincides
with that of the other. They explore patterns in the usage
of the partners such that situations where one partner is
occupied in another application while a second partner is
idle is avoided. The technique is relevant only in a more
static set-up where the commitments of the collaborating
organizations are more defined. This technique may not be
suitable in a more dynamic environment like that of service
composition.

Wang et al. [12] present a technique which also borrows
concepts from queueing theory to calculate the “expected”
waiting time of services in a composition set-up. However,
while doing this they make the simplifying assumption that
the service composition queue is in the ‘steady-state’, by
assuming that the request ‘arrival-rate’ is always smaller than
the service ‘completion-rate’. This however is not always
true. Second, their method of calculating the request arrival-
rate is based on observing the behavior of each service
component for a long time. This is usually not practicable
owing to the dynamism associated with the characteristics
of each service in a composition environment.

Zuhair et al. [13] utilize the average waiting-time criterion
in the context of an elevator system to modify the “jerk”
and “acceleration” of elevators. The calls on the various
floors are observed and if the difference between the current
average waiting-time and the regular average waiting time
exceeds a certain “unacceptable delta”, the jerk and acceler-
ation of the elevators is increased. The jerk and acceleration
are brought down, once the average waiting-time goes down.

Flockhart et al. [14] present a technique to minimize the
waiting-time for calls in a call-centre set up. The technique

involves forming ‘agent-queues’ for each skill. Whenever a
call is received requiring a certain skill, the agents in the
queue corresponding to the skill are looked up. The number
of queues that each of these agents is present in is computed.
The agent that is present in the smallest number of queues
is the one selected. This ensures that the waiting time for
subsequent calls is minimized. In a service composition set-
up, this technique could be utilized in a situation where each
service element is capable of performing more than one task.
Whenever a request for a task comes along, the service that
is available, capable of performing this task, and which is
capable of performing the minimum number of other tasks
amongst all available services is selected.

Green [15] utilizes queueing theory in healthcare in the
allocation of resources in an effective manner. The complex-
ity and unpredictability of a hospital set-up notwithstanding,
Green shows the effectiveness of an M/M/s queueing
model in the allocation of resources such as beds and staff
to minimize the waiting-time of patients as well as enabling
optimal utilization of resources. The demand flexibility in
hospitals is dealt with by application of the queueing model
over smaller ‘staffing periods’ rather than over the whole
day.

III. THE SERVICE DOMAIN

S1

S2 S3 S4

S5 S6

S8 S9

S14

S7 S10 

S11 S12 S13
Cij

Si

Sj

Level 1

Level 2

Level 3

Level 4

Figure 1. The service domain with arcs representing coupling

The service domain in our work has been represented
as a set of levels, with each level corresponding to a unit
functionality of the composite application. Each of the levels
is instantiated by the group of service components that are
capable of catering to the functionality represented by the
respective level. From each of the levels, one service needs
to be selected to be part of the composite application. The
levels are arranged from top to bottom in such a way that
the first service to be invoked is the top most one and this
service invokes one of the services at the next immediate



level and so on. In an attempt to keep the model simple, the
order of service invocation is from top to bottom and never
from bottom to top, thus avoiding cycles. In a situation that
a functionality is to be performed several times, the level is
repeated several times in the domain. Figure 1 shows the ser-
vice domain representation followed in our work. Services
S2, S3, and S4 are functionally equivalent. Similarly S5,
and S6 are functionally equivalent and so on. For example,
Figure 2 is the representation of a possible service domain of
a trip-planner application. The top most level of this domain
includes the ‘log-in’ procedure, authentication etc. The next
level corresponds to the flight-booking functionality. The
services populating this level are each capable of booking
a flight for the customer. One of these needs to be selected
for the application. The subsequent functionality levels in
the trip-planner application domain are respectively from
top to bottom, the taxi-booking functionality, the hotel-
booking functionality, the combined payment functionality
(hypothetical service examples have been used), and finally
the ‘log-out’ procedure.

Log in

travelocity Expedia Travel Centre

QuickTaxi TaxiOnline

EasyHotels BestHotels FastHotelBooking HoteloCity

SecureTransac PaymentGate EasyPay

Log 
out

Figure 2. The service domain of the trip-planner application

Further in the service domain representation, a factor
called Coupling joins each service at a certain functionality
level in the domain to every service at the next lower
functionality level. The coupling Cij between a service i
at a given level and a service j at the next lower level is
a dimension-less factor which expresses the likelihood, that
given that service i is currently being used to cater to the
functionality at its level, the next service to be invoked will
be j to cater to the next level of functionality. The higher
the value of the coupling, the higher is this likelihood. The
coupling is represented by dotted arcs in the service domain
representation shown in Figure 1.

The coupling depends on factors such as business relations
between the respective service providers, and low level
factors such as technical compatibility between the services.
For example, in the trip-planner application of Figure 2, let
the coupling between services Expedia and QuickTaxi be 2.4
and the coupling between Expedia and TaxiOnline be 4.3.

Now every time that Expedia is invoked to carry out the
flight booking functionality, there is a much larger possibility
that TaxiOnline will be invoked to do the taxi booking rather
than QuickTaxi.

IV. THE PROPOSED TECHNIQUE

The proposed technique for calculating the average waiting-
time at each service involves employing concepts from
queueing theory. The queueing theory concepts borrowed
however are those meant for a ‘steady-state’ condition when
the probability of the queueing system having a certain
number of units is constant [10]. In a service composition
environment, however, the steady-state condition is seldom
attained. The queueing theory concepts therefore need to be
customized slightly to be utilized for the purpose of service
composition. Besides this, customization also needs to be
done to adapt to the specific nature of the service domain
used in our research (described in the previous section).

A. Average waiting-time in queueing theory

The queueing system that has been utilized is the M/M/1
queue. This is the most basic queue, where the first M stands
for negative exponential time distribution of request arrivals,
the second M stands for negative exponential distribution of
service completion, and the 1 stands for the fact that there
is just one queue (no parallel queues). Figure 3 shows the
M/M/1 queue where λ denotes the request ‘arrival-rate’
and µ denotes the service ‘completion-rate’.

Proposed technique

Borrowed from Queueing theory ...

In a single-server queue, at equilibrium:

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
total waiting time

total requests

λ

µ

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
total waiting time

total requests

λ

µ

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
total waiting time

total requests

λ

µ

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
total waiting time

total requests

λ

µ

request arrival rate

service completion 
rate

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µ

For equilibrium, ! < µ

Thursday, June 18, 2009

Figure 3. The basic M/M/1 queue

This is the most common kind of queue which is observed
in most everyday activities like the customer queues in
banks, movie-halls etc. A queue like this is characterized
by the number of units present within the queueing system.
For example, in the queue in a bank, if the number of people
waiting in the queue is 5, the total number of people in the
queueing system would be 6, i.e. (5+1), the 5 people waiting
and the 1 person being served. The ‘state’ of that queueing
system at that point of time is said to be 6. A queueing
system of this kind, for a short period of time has a randomly
varying number of states. To characterize the behavior of the
queue during short time spans is very challenging. However,
if the system is observed over a large span of time, it often
attains a ‘steady-state’ wherein the probability of the system
being in any state is found to be constant. For larger time
spans, the queue behavior is more predictable and useful
conclusions may be drawn for the same. To attain the steady-
state however, one basic requirement is that the request



arrival-rate should be smaller than the service completion-
rate of the system (λ < µ). If this condition is not satisfied,
the number of waiting units will progressively increase and
the steady-state would never be reached.

In the steady-state situation, the average waiting-time for
requests in an M/M/1 queue is given by the expression
in equation (1) [10]. In this equation, as the value of λ
increases (arrival-rate increases), the value of (µ−λ) in the
denominator decreases. The increasing λ in the numerator
and the decreasing (µ − λ) in the denominator cause the
average waiting-time to increase. This makes intuitive sense,
as the arrival-rate and hence number of arrivals increases in
a queue, the average waiting-time increases. However, this
makes sense as long as λ is less than µ. As soon as the two
become equal, the average waiting-time becomes ∞, and
if λ increases beyond µ, the average waiting-time becomes
negative.

Average waiting time =
λ

µ · (µ− λ)
(1)

B. Customization of average waiting-time for the composi-
tion scenario

The average waiting-time expression borrowed from the
queueing system described in the previous sub-section needs
to be customized for the composition scenario for two
reasons: 1) the request arrival to a service may be from
any of a number of services at the functionality level
immediately above, thus the arrival-rate would need to be
appropriately modified; 2) the dynamic nature of the service
composition environment does not allow the attainment of
a steady-state which is a necessary requirement for using
the average waiting-time expression in equation (1). This
is because it cannot be assured in the dynamic service
composition environment that the request arrival-rate (λ) is
always smaller than the service completion-rate (µ).

To determine the request arrival-rate for a service in a
multi-level domain, a simple case is first considered. Assume
the service domain at each level comprises of only one
service. The request arrival-rate at a service l would then
simply be equal to the completion-rate of the service k
immediately above it (ignoring other latency factors). This
is because, every request on being served by k would enter
the queue of service l.

For a service domain with multiple candidate services
at each functionality level, a request may arrive from any
of the services from the level immediately above it. The
‘coupling’ values described in the previous section are
used in determining which candidate service is chosen by
the request. Recall that coupling is a characteristic feature
between two services i and j at adjacent functionality levels
such that a higher coupling value Cij results in a greater
likelihood of service i invoking service j. This means that
a request on being completed by a service at one level

would next move to a service at a lower level which has
a higher value of coupling with the current service. The
request arrival-rate at the queue of the lower level services
therefore depends on the values of coupling between the
lower level services and the upper level services and on the
completion-rate values of the services at the upper level.Proposed technique

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µi

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µj

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µk

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µl

Cil
Cjl

Ckl

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µl

max(
Aij

1 + number of requests at i
)

Arrival Rate(λ) =
1
3
∗ { Ail

Ail + Ajl + Akl
∗ µi+

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µl

max(
Aij

1 + number of requests at i
)

Arrival Rate(λ) =
1
3
∗ { Ail

Ail + Ajl + Akl
∗ µi+

+
Ajl

Ail + Ajl + Akl
∗ µj +

Akl

Ail + Ajl + Akl
∗ µk}

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µl

max(
Aij

1 + number of requests at i
)

Arrival Rate(λ) =
1
3
∗ { Ail

Ail + Ajl + Akl
∗ µi+

+
Ajl

Ail + Ajl + Akl
∗ µj +

Akl

Ail + Ajl + Akl
∗ µk}

Completion Rate = µl

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

Approx. Avg. Waiting-time =
λ

µ ∗ (µ− λ)

λ

µl

max(
Aij

1 + number of requests at i
)

Arrival Rate(λ) =
1
3
∗ { Ail

Ail + Ajl + Akl
∗ µi+

+
Ajl

Ail + Ajl + Akl
∗ µj +

Akl

Ail + Ajl + Akl
∗ µk}

Completion Rate = µl

Affinity = {Failure distance}α·{ 1
Average waiting time

}β

Approx. Avg. Waiting-time =
λ

µ

Tuesday, July 14, 2009
Figure 4. The arrival-rate derived from completion rate of ancestor services

Figure 4 explains this. Service l is a service at a certain
level which has coupling values Cil, Cjl, and Ckl with
services i, j, and k respectively at the level directly above it.
Services i, j, and k respectively have completion rate values
equal to µi, µj , and µk. The value of the request arrival-
rate for service l derived from these completion rate values
is shown in equation (2).

Arrival-ratel(λl) =
Cil

Cil + Cjl + Ckl
· µi+

Cjl

Cil + Cjl + Ckl
· µj +

Ckl

Cil + Cjl + Ckl
· µk (2)

The second customization that needs to be done to borrow
the concepts of the M/M/1 queueing system is to recognize
that the steady state condition is difficult to be attained in a
composition environment owing to the dynamism associated
with a composition scenario. This is due to the fact that it is
difficult to ensure that the request arrival-rate at each service
is always less than its completion-rate. Several ‘trial and
error’ experiments were performed to modify the average
waiting-time expression of equation (1), and finally the
average waiting-time expression was modified as shown in
equation (3) to give an approximate figure of the average
waiting-time of a queue in conditions that did not qualify as
‘steady-state’. It may be argued that such a modification of
the average waiting time expression could deem the latter
invalid. We however conducted experiments, results of which



are provided in the next section, that establish its validity
even in conditions that do not qualify as steady state. More-
over, the modified expression also makes sense intuitively.
As the request arrival-rate λ increases for a constant µ,
the value of the average waiting-time increases according
to equation (3). This seems logical because an increase
in the arrival-rate of requests at a queue for a constant
completion-rate would result in a stacking of requests and
thus a higher waiting-time. Similarly, according to equation
(3) as the completion-rate µ increases for a constant λ,
the average waiting-time decreases, because the µ is in
the denominator of the expression. This also seems fair
because if the completion-rate of the service increases for a
constant arrival-rate, the service would start processing the
requests much faster and there would be a resulting fall in
waiting-time. Furthermore, this expression does not have the
requirement of λ < µ. Even when λ is greater than µ, it still
makes sense. Thus, the steady-state restriction of the original
Queueing Theory waiting-time expression is overcome.

Average waiting time =
λ

µ · (µ− λ)
⇒ λ

µ
(3)

V. EXPERIMENTAL VALIDATION

Experiments were conducted on a service domain with 29
services (excluding the first and the last) spread over 6 levels
of functionality. The experimental domain is shown in Figure
5.

1

43 52 6

8 9 107

31

12 13 1411

1716 1815 19

22 23 2421 2520

2827 2926 30

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 5. Service domain used in the experiments

The experimental procedure comprised simulating the be-
havior of the domain for a large number of service requests,
and calculating the average waiting-time at each service by
observing the time spent by the requests on an average in the
service queue. Next, the proposed technique was applied on
the domain and the waiting-time calculated at each service.
Although, numerically the waiting-time calculated through
simulation and the proposed technique were found to differ
(this could be owing to variable simulation parameters), the

service ranking in terms of waiting-time was found to be
almost identical in either procedure, at each level.

A. Simulation

The simulation procedure is described in a little detail in
the following portion. Seven different sets of completion-rate
values and coupling values were experimented with. Each
experimental set also had an application request arrival-rate
which was substantially larger than any of the completion
rate values. 100, 000 events were allowed to happen ran-
domly at the assigned rates. An event comprised either the
arrival of a new request for the entire composite application
or the completion of any of the services, servicing a request.
The progress of the simulation is traced as follows: an
application request that arrives at the top of the domain
immediately enters service 1 (Figure 5) to be serviced if
the latter is idle or joins the queue if service 1 is busy
servicing another request. Once this request is serviced by
service 1, it has to move to one of the services at the next
level. The service to which this request moves depends upon
the coupling values between the services at the next level
and service 1, and the number of requests already waiting
in the respective queues of the services at the next level.
The decision on which service to move to is on the basis
of equation (4) and is illustrated in Figure 6. The service
selected in Figure 6 is the shaded one which although has
a smaller coupling value, has a smaller number of services
in its queue.

next-servicei = max(
couplingij

1 + number of unitsj

) (4)

R

R

R

R

R

1.2 1.1

1.2
1 + 3

= 0.3 1.1
1 + 2

= 0.36

Criteria for choosing service:

Fail-Ratej =
Affinityjk ∗ Fail-Rateold

j

Mean-Affinity

Affinityij = 1+
no. of transitionsij − min. transitions at level

min. transitions at level

Fail-Ratenew
k = 1.005 ∗ Fail-Rateold

k

max(
Aij

1 + number of requests at i
)

R

Monday, August 31, 2009

Figure 6. The movement of requests from one level to another during
simulation

The process of moving from one functionality level to the
next continues for the request until it reaches the lower-most



concluding level. This process is repeated for a large number
of requests, and while the simulation is being run, the time
spent by the requests in the queues of each of the services
it goes through is noted. Finally, the average waiting-time
for each of the services is calculated by dividing the total
waiting-time of all the requests that were serviced by it, with
the number of requests serviced.

The motivation for running the simulations was to get an
idea of how a domain (if one existed) behaved in terms of
waiting-time if it were observed for a large period of time
(one that allowed 100, 000 events).

B. Proposed technique application

The proposed technique comprised of simply calculating
the request arrival-rate values for each service in the domain
using the expression in equation (2) first. Subsequently,
the calculated arrival-rate values were substituted in the
average waiting-time expression in equation (3). With the
completion-rate values already given, the average waiting
time value for each service was calculated.

C. Results

The results of the experiments for two sets of completion-
rate and coupling values are shown in Figures 7, and 8.

In Figures 7, and 8 as mentioned before, although the
numerical values of the waiting-time calculated during sim-
ulations and using the proposed technique do not match,
the important point to look out for are the service ranks
that have been allotted to the services on the basis of the
average waiting-time values calculated (smaller waiting-time
services are more highly ranked). The rankings have been
shown on the right-hand side of the tables in the two figures.
The ranks allotted by each technique are found to be in
almost perfect conformance.

The proposed technique is therefore found to almost
perfectly match the selections of the simulation (since the
rankings of the services determines the selection).

VI. CONCLUSION

This paper presents a technique to utilize the average waiting
time to select a service from a group of functionally equiv-
alent ones in a service composition scenario. The selected
service is the one that has the smallest waiting time value.
Queueing theory concepts have been borrowed to give a
rough estimate of the waiting time values. The concepts
borrowed are intended for use under a steady state condition.
However, attaining the steady state in a dynamic service
composition scenario is rare, hence the queueing theory
concepts have been appropriately customized.

The advantage of this technique is that it enables a rough
estimation of the waiting time through the application of ele-
mentary formulae. The technique is validated by comparing
the proposed technique results with the waiting time values
calculated by observation in a simulated environment. It was

found that in almost all cases the service ranking on the basis
of waiting-time using the proposed technique almost exactly
matched the observed values.

REFERENCES

[1] Shahram Dustdar and Mike P. Papazoglou, Services and Ser-
vice Composition An Introduction, it-Information Technology,
Volume 50, 2008.

[2] Patrizia Battilani and Francesca Fauri, The rise of a service-
based economy and its transformation: the case of Rimini,
Rimini Centre for Economic Analysis, Working Paper Series,
2007.

[3] Faiz Gallouj, Innovation in the service economy: the new
wealth of nations, Edward Elgar Publishing, 2002.

[4] Expedia, http://www.expedia.com

[5] travelocity, http://www.travelocity.com

[6] FlightCentre, http://www.flightcentre.com

[7] Shuping Ran, A model for web services discovery with QoS,
ACM SIGecom Exchanges, pp. 1-10, 2003.

[8] Natallia Kokash, Web service dicovery with implicit QoS
filtering, Proceedings of the IBM PhD Student Symposium,
in conjunction with the International Conference on Service
Oriented Computing (ICSOC), pp. 61-66, 2005.

[9] Zhengdong Gao and Gengfeng Wu, Combining Qos-based ser-
vice selection with performance prediction, IEEE International
Conference on e-Business Engineering (ICEBE), pp. 611-614,
2005.

[10] Donald Gross and Carl M. Harris, Fundamentals of Queueing
Theory, Wiley Series in Probability and Statistics, 1998.

[11] Azlan Ismail, Jun Yan, and Jun Shen, Dynamic Service
Selection for Service Composition with Time Constraints, Pro-
ceedings of the Australian Software Engineering Conference,
2009.

[12] Xiaoling Wang, Kun Yue, Joshua Zhexue Huang, and Aoying
Zhou, Service Selection in Dynamic Demand-Driven Web
Services, Proceedings of the International Conference on Web
Services, 2004.

[13] Zuhair S. Bahjat and Gerald B. Fried, Automatic selection of
different motion prole parameters based on average waiting
time, United States Patent 5290976.

[14] Andrew D. Flockhart, Robin Harris Foster, Roy A. Jensen,
Joylee E. Kohler, and Eugene P. Mathews, Call center agent
selection that optimizes call wait times, United States Patent
6192122.

[15] Linda Green, Queueing Analysis in Healthcare, International
Series in Operations Research and Management Science, 2006.



Domain 1Domain 1 Average waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time values Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) 

Level 1
Simulation 2.9 0.9 1.6 0.7 1.1 5 2 4 1 3

Level 1
Proposed 208.3 65.79 122 57.8 99.01 5 2 4 1 3

Level 2
Simulation 5.3 1.7 2.2 1.3 4 2 3 1

Level 2
Proposed 0.511 0.173 0.223 0.145 4 2 3 1

Level 3
Simulation 39.9 58.1 173.1 29 2 3 4 1

Level 3
Proposed 0.246 0.316 0.918 0.206 2 3 4 1

Level 4
Simulation 0.5 1.0 1.2 0.5 0.8 1 4 5 1 3

Level 4
Proposed 0.095 0.213 0.245 0.096 0.156 1 4 5 2 3

Level 5
Simulation 0.5 0.8 1.3 0.5 1.3 0.6 1 4 5 1 5 3

Level 5
Proposed 0.143 0.234 0.374 0.146 0.4117 0.187 1 4 5 2 6 3

Level 6
Simulation 0.6 0.5 3.1 0.5 1.1 3 1 5 1 4

Level 6
Proposed 0.137 0.125 0.65 0.125 0.234 3 2 5 1 4

Tuesday, December 8, 2009

Figure 7. Level wise comparison of results between simulation and the proposed technique (Domain 1)

Domain 2Domain 2 Average waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time valuesAverage waiting-time values Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) Service rank (smaller waiting-time ahead) 

Level 1
Simulation 0.9 0.4 6.7 0.6 1.7 3 1 5 2 4

Level 1
Proposed 78.125 36.764 454.55 49.26 140.85 3 1 5 2 4

Level 2
Simulation 0.7 0.6 0.6 1.4 3 1 1 4

Level 2
Proposed 0.1517 0.1504 0.1317 0.3087 3 2 1 4

Level 3
Simulation 0.9 0.7 1.4 0.5 3 2 4 1

Level 3
Proposed 0.2966 0.2325 0.4269 0.1641 3 2 4 1

Level 4
Simulation 0.5 0.7 0.8 0.6 0.4 2 4 5 3 1

Level 4
Proposed 0.2041 0.2418 0.3405 0.2301 0.1728 2 4 5 3 1

Level 5
Simulation 1.1 1.0 0.6 0.4 0.7 1.1 5 4 2 1 3 5

Level 5
Proposed 0.3557 0.3414 0.2040 0.1289 0.2313 0.3848 5 4 2 1 3 6

Level 6
Simulation 0.8 0.5 0.7 1.6 0.4 4 2 3 5 1

Level 6
Proposed 0.1865 0.1313 0.1787 0.3615 0.1020 4 2 3 5 1

Tuesday, December 8, 2009

Figure 8. Level wise comparison of results between simulation and the proposed technique (Domain 2)


