
Rain4Service: An approach towards decentralized web service composition

Tanveer Ahmed, Abhinav Tripathi, Abhishek Srivastava
Discipline of Computing Science

Indian Institute of Technology Indore, India
Email: {phd12120101, ee130002001, asrivastava}@iiti.ac.in

Abstract—The widespread adoption of service oriented ar-
chitecture owes its popularity to service composition, where
several web services are combined dynamically at runtime.
As is evident today, the Internet is evolving towards the
‘Future Internet’. In this context, web service composition
has to deal with the problems of mobility, fault tolerance,
reliability and the ultra large scale of the Future Internet. The
practice of composition, the most popular variant of which is
service orchestration, is expected to face numerous challenges
in the Impending Future Internet. This is mainly because it
comprises a central control point. Service choreography is
widely viewed as an appropriate remedy to these problems
as it has a predominantly decentralized orientation. In this
paper, we propose a decentralized framework for the purpose
of executing a case oriented workflow that would be ideal for
the Future Internet. The services in the framework commu-
nicate and co-ordinate amongst each other without involving
a centralized orchestrator. Further, we propose a technique
that models the behavior of rain drops to achieve decentralized
service composition. Based on the principles of message based
service choreography, the proposed composition technique aids
selection and execution of web services. We show how the model
achieves service composition leveraging both static and runtime
properties of a service. A runtime SOA test-bed to validate
the decentralized framework and the composition technique is
developed in JAVA. Validation is done via real web services.
Multiple workflows are executed to demonstrate the viability
of the model in actual deployment. Through experiments and
exploration, the technique is found to outperform similar
techniques in literature.

I. INTRODUCTION

Service oriented computing has become a pervasive
paradigm, where efficiency, in either a business process
or a data intensive scientific application, is the center of
attention. This computing paradigm owes its popularity to
dynamic service centric systems, and their capability to
combine multiple loosely coupled and platform independent
services at runtime, thereby presenting an illusion of hav-
ing a proficient and a dedicated application, provisioned
for execution anytime and anywhere. The most favoured
artifacts, for an Internet based scenario are web services,
and their temporal collaboration, commonly referred to as
web service composition. Web service compositions are a
classic utilization of component based software engineering,
where a complex application is built from loosely coupled,
autonomous and platform independent interfaces. However,
this paradigm mostly rely on a centralized orchestrator,
e.g. VMware vCenter Orchestrator, Taverna (scientific work-
flows) etc., thereby bringing in a lot of potential issues

(scalability, reliability, single point of failure, to name a few),
that make the entire composition engine a heavy choke point.
A single point of failure could render an entire hierarchy of
services moot.

As outlined previously, the internet is evolving towards
the ‘Future Internet’. One of the constituents of the Future
Internet, Internet of Services (IoS) outlines, services can
collaborate among each other to support a process spanning
across different organizations [9]. In the context of the
Future Internet, IoS has to deal with the issues regarding
mobility, scalability, reliability etc., therefore reliance on
a centralized architecture for either of the two scenarios
(business or scientific) is a ‘slippery slope’. In this context,
we believe service choreography could be ‘the’ solution.
However, enacting a business or a scientific process via
service choreography is a challenge. The reason for which
is outlined below.

Consider, a workflow is enacted via service choreogra-
phy. In that case, the higher order abstract functionality is
specified via a choreography description language, e.g. Let’s
Dance. The first requirement that arises, is to make each
service understand and execute its respective role. Moreover,
if a single service is interacting with multiple services,
then it must preserve the contextual information for all the
choreographies. Further, it has to become self-aware while
instantiating the appropriate dance for a particular workflow.
To accomplish this functionality, the services have to parse
the description and store the context information. The current
implementation of autonomous web services does not allow
for such a requirement.

Second, consider services following the RESTful standard.
Moreover, consider services hosted on a mobile device. In
our view, the ideal choice is to access and host services using
RESTful standards, thereby removing the heavyweight pro-
tocol of WSDL-SOAP (due to battery constraints). However,
the present RESTful standard was founded on the pillars of
statelessness. In this context, how do a ‘stateless’ service
access and pass data/parameters to a separate resource with-
out storing statefull information? Composition of RESTful
services in a decentralized environment is still a big problem.

Third, if services are communicating amongst each other,
then should they pass data directly or share data via a shared
memory? Is the shared memory reliable, and will it produce
timely results (for time critical applications), with the amount



of data (42.07 exabytes/month in 20141) generated and
transfered over the existing network infrastructure. Further,
in the Future Internet with cloud computing, or rather
federation of clouds, allowing XaaS, how do different flavors
of services (Human, RESTful, WSDL-SOAP) communicate
and interact?

Some works in literature [12], [10] propose wrapping a
service with an interpreter to achieve service choreography.
A protocol to execute, enact, and verify choreographies
in peer-peer network is proposed in [14]. However, the
author states “an extra layer of functionality, a choreography
interface needs to be added to the stack”. The question
that arises is: Do the existing service implementation allow
for such a proposal? Even if a service is wrapped with an
interpreter, the next question that arises is in the context
of mobile services, with severe battery constraints. Addition
of an extra middle layer on the device itself, will cause
unnecessary power consumption. Moreover, the techniques
do not talk about the scale, the economic factors, and the
heterogeneity of the Future Internet. Further, the issue of
reliability is not addressed. With mobile services, this issue
is inevitable.

In this paper, we propose a decentralized deployment
framework keeping in mind the issues highlighted above.
The framework is capable of executing and selecting ser-
vices at runtime. The services collaborate independently and
communicate directly without involving a centralized orches-
trator. Moreover, we propose a greedy and a lightweight
composition method customized from the behavior of Rain
Drops. The technique creates an environment that facilitates
the selection of a service from a set of similar services. We
inspect and discuss the behavior of real world rain, the effect
of gravity, the roughness of a surface, the extent of corrosion,
the trail left by a drop etc. to devise a system that produces
the most optimal result to compose services together. We
present our findings and utilize these traits to develop a
composition model for web services. While formulating this
technique, we assumed the surface on which a drop of water
flows down is slanted. It is also assumed, the drop is falling
and rolling (down a surface) under the force of gravity.

In this paper, experiments are conducted with real web
services. Similar techniques in literature, [5] [6], do not
include any prototype implementation. Furthermore, none of
the issues highlighted above are addressed. Moreover, the
proposed composition technique is found to outperform the
two techniques.

The rest of the Paper is organized as follows: Section II
introduces the decentralized framework and the composition
technique. Results are presented in Section II. Related work
is discussed in IV. Finally, we conclude in Section V.

For the purpose of clarification, Web services are referred
to as service nodes or nodes throughout the paper. A set of
services instantiated for a ‘workitem’ or a ‘process-step’is
called a level.

1http://www.cisco.com/en/US/solutions/collateral/-
ns341/ns525/ns537/ns705/ns827/white paper c11-481360.pdf

II. PROPOSED MODEL

A. Workflow Description

To execute a workflow in a decentralized manner, we
rely on execution rules. Using execution rules, and the
fundamentals of domain specific language, any type of
workflow can be mapped from a higher abstract level to a
lower level with executable code. Or, techniques in literature,
e.g. MAP [14], LetsDance can be used. A technique to
devise implementations from a higher order choreography
language is proposed in [16]. In this paper, we are discussing
the model in the context of decentralization in the Future
Internet, therefore there are some other requirements that
must first be addressed. In the next subsection, we discuss
some of the technological dependencies of the proposed
work.

B. Technology and the Future Internet

In the proposed work, we rely on some of the existing
technology available in the open-source community and the
existing work in literature [11], [2], [13], and Distributed
Shared Memory. We lay the technological foundation of the
model on these works.

In the Future Internet, there is an inevitable need of a
modern service description language. The service description
language should be powerful to describe both software
services and human based services. Moroever, the language
must be self-sufficient to cater to the needs of the IoS. In
the IoS, services are tradeable and marketable. Moreover,
an individual service will become capable of executing a
workflow on its own. The ideal candidate realizing all the
requried functionalities, is the Unified Service Description
Language (USDL) [11]. In our view, the language is com-
prehensive enough to describe and cater to the needs of
the IoS. USDL is a protocol suite describing multiple mod-
ules viz Pricing, SLA, Legal, Functional etc. The services
described via USDL are bundled as ‘Network Provisioned
Entities’. The service can either be a stand-alone service or
a ‘bundle’ of multiple services. USDL allows the customers,
who are the ultimate stakeholders, to rate a service or a
service bundle. Moreover, USDL is capable of describing
both human provided services and software based services
(RESTful and SOAP). In IoS, the services are the economic
entity, thereby involving international legal aspects. Since all
of the major requirements are satisfied by USDL, therefore
in the proposed work, we rely on this language for service
description.

To cater to the requirements of a stable delivery platform
(for service access), a Distributed Federated Enterprise Ser-
vice Bus (hereafter, DSB or bus) is employed. A prototype
DSB is proposed in [2]. However, to deal with the issues
of service choreography (outlined previously), the present
implementation is not sufficient. In this paper, we extend the
present prototype to introduce certain modifications. First,
the Binding Component (BC), as proposed in [2], is modified
to interpret the rules (or a choreography description) to
execute a workflow. Second, the listener component (of the
DSB) for each web service is modified to translate messages



between various flavors of services (SOAP, RESTful, Human
Provided Services), a similar method is available in [13].
The ‘default’ listener component is attached by the DSB
for every SOA ‘app’ deployed on the bus. In the proposed
work, the component also acts as a container, storing the
essential context information. We rely on the DSB’s multi-
node architecture to address the scalability issue of the Future
Internet. Because of the existing technology and the proposed
changes, the DSB could be the best Middleware (at present)
to execute Fututre Internet’s SOA apps, without introducing
an extra layer on the services.

As far as the communication overhead is concerned, the
services interact via an event driven publish-subscribe model
[1]. They subscribe to listen to the Force value (described
later), a node is offering. Further, if there is any change in the
execution procedure, only the concerned resources are noti-
fied. Hence, an increased level of privacy. Since, the event-
driven mechanism of an ESB (or DSB) is well appreciated
in both academia and industry, the model relies on these
features to conduct transmission (of data) related affairs. It
should be pointed out that to cater to the requirements of
the proposed model, some triggering rules (in JavaScript or
4GL) have to be hooked in the event bus2, thereby making
the strategy feasible in actual deployment.

The next issue is reliability, especially with mobile web
services. It was outlined in the previous paragraph, the
model relies on the Middleware. It is a known fact that
a DSB or an ESB, offers intelligent content based routing
and guaranteed delivery of messages. However, for realtime
applications, the delivery mechanism will cause a lot of
unnecessary delay, especially when the deployed application
is temporarily unavailable (The DSB offer two ‘message
transporter’ properties: Fast and Reliable3). In the reliable
mode, the DSB waits for the unavailable app to be hooked
in again. A very simple solution is to keep redundant services
available for immediate execution. These services also allow
a capability for parallel processing, load balancing, and
dynamic adaptations.

To provide a stable storage location, we rely on the novel
concept of the Semantic web data space, e.g. OpenLink Data
Spaces (ODS)4 in the open source community. It is a next
generation application of distributed collaboration, satisfying
the needs of distributed shared state, client-side updates and
data consistency5. It also allows for an inexpensive method
to create Linked Data Web. The ODS type storage schema
allows a simple API to read and write to a persistent storage.
The APIs to access the protocol are exposed as a web
service (SOAP & RESTful APIs). The data center allows
the query to specified in GData, OpenSearch, XQuery/XPath
over HTTP, SPARQL etc. These type of storage spaces bring
in the SOA style of communication and storage patterns,
hence they are ideal for the Future Internet apps. A question

2http://www.oracle.com/technetwork/articles/soa/jellema-esb-
090659.html

3https://doc.petalslink.com/display/petalsesb31/Petals+Enterprise+Service+Bus
4http://ods.openlinksw.com/wiki/ODS/
5http://www.cs.duke.edu/ari/cisi/relay/html/paper/paper.html

could arise here: Why use a semantic space instead of just a
simple Distributed Shared Memory? A space like ODS offer
a semantically rich, a stable SOA style distributed semantic
repository, deals with the virtualization of heterogeneous
data-centers accessible via existing protocols, is deployable
on a cloud based infrastructure. So, the real question is: Why
not?

In our view, using the proposed technological improve-
ments and modifications, service choreography can be en-
acted without requiring significant changes in the existing
infrastructure. The proposed methodology is validated with
a prototype using real web services. It should be noted here
that in this paper, our motivation is to propose a technological
solution to achieve a decentralized service composition only.
Verifying and recovering from a choreography makes room
for future development.

C. Rain4Service: Decentralizing Web Service Composition

Until now, we have laid the technological foundations of
the decentralized execution framework. In this section, we
discuss the rain model for service composition. We start by
discussing some of the observations made during analysis.

In the real world, whenever the individual droplets of rain
fall, they have a tendency to come together and form bigger
drops. Whenever a drop of water touches the surface, it
starts rolling immediately (under the influence of gravity).
While the drop is in motion, it exhibits certain interesting
characteristics:

i) Assuming a drop to be spherical, initially the radius
is large. On its way towards a sink, the radius of the drop
decreases continuously. This is due to the fact that the drop
leaves behind a trail of liquid as it rolls down.

ii) If the surface offers high friction, a situation may arise
when the drop stops moving completely and forms a bulge
on the surface.

iii) A drop always rolls down a surface leaving behind a
trail of liquid. The subsequent drop, that follows the same
trail moves more rapidly. The reason is quite simple: the
layer of the liquid left behind, reduces the frictional drag
between the new drop and the upper layer of the material.

iv) It is a common observation, that when rain occurs
drops fall and roll under the influence of gravity. It was
also observed, there existed certain situations when bulges
containing liquid droplets were formed. We observed, there
were instances when drops kept coming into these bulged
areas, still the bulge showed no mobility at all i.e. no droplet
flowed out.

Looking at the inherent structure of a surface, there are
a lot of inferences that can be drawn. It is observed that
sometimes a rough patch is formed due to wear & tear.
The roughness of a surface can be explained in terms of the
availability of cracks. A rough patch is made up of multiple
lines of cracks ‘(LoCr)’. The more the LoCr, the rougher and
broader a patch. Next, if we consider a surface to be divided
into various zones (as in a voronoi graph), then a drop of
water has to travel through various zones to finally end up
in the sink.



While it is raining, the drops have a natural propensity
to cause stagnation on the surface. The objective of a road-
planner is to make the drops end in the sink quickly to
avoid such scenarios. Though a lot of observations are not
discussed, we describe only the ones that are relevant to the
model.

D. The Frictional Drag

In the proposed model, each service node offers a fric-
tional drag. A drop of water is considered as the composite
application request. In order to avoid stagnation, the current
drop(s) must leave the zone(s) quickly. In the proposed work,
it is analagous to a composite application request leaving a
service node immediately. In other words, the waiting time
experienced at a service must be minimum. This solves the
dual purpose of congestion avoidance and fast application
completion. Further, we believe the Future Internet will be
capable of processing Big Data via SOA, deployed on a
cloud based infrastructure [15], [3]. We believe, the passage
of big data among different resources (or services) will also
become an important QoS parameter in the Future Internet.
Therefore, we propose the metric flow time, defined as “the
time required to pass data and control from one resource to
another resource”. Flow time will depend on the conditions
of latency, bandwidth availability, geographical distribution,
reliability, uptime etc. Further, it is a known fact that the
processing of Big Data requires substantial time, therefore
the parameter, waiting time is also important. Based on the
two parameters, the definition of the frictional drag due to
the waiting time and the flow time is as follows:

fw = twj + tf (ij) (1)

where, fw is the frictional drag offered by a node (e.g.
Sj). twj is the waiting time experienced by a request, tf (ij)
is the flow time between the current node (i) and successor
node(j).

A special case arises here, when the same resource realizes
two different and subsequent activities of a workflow. In
such a case, the flow time will become negligible. Hence,
a reduction in the frictional drag is achievable.

In the previous subsection, we discussed the role LoCr
plays in determining the roughness of a surface. It is a
known fact that if a surface is rough, then it offers a high
frictional drag. In the rain model, the frictional drag offered
by a service is also expressed in terms of the functionality
a USDL based service offers. The motivation to include this
parameter is explained below.

Consider a situation where a service (S) exposes multiple
‘functions’ (USDL’s terminology) via its USDL interface,
e.g. PowerSearchRequest, AuthorSearchRequest etc. If a
customer wants to search for an author of a book, then the
best choice is to invoke the AuthorSearchRequest function.
The results obtained will be in the context of ‘Books’ and
‘Authors’. If one compares this to a service which offers
only a basic ‘search’ function, then result obtained would
be difficult to analyze. Moreover, it will require further
data manipulation. In this case study, the service S, has

provided granular support to its customers, thereby making
the execution of a problem easier.

Second, if a service (S1) has, e.g. 10 functions and another
service (S2) has 2 functions, then S1 is capable of catering to
10 users simultaneously. In today’s world, IT organizations
strive to achieve efficient resource utilization. In this context,
multiple functions offered by a service can help achieve
a high concurrency and a high degree of parallelism with
optimal usage of the underlying hardware. Third, our in-
spiration comes from one of the basic principles of software
engineering - function point analysis (FPA). “The capabilities
of FPA allow accurate estimates to be made, risks to be
evaluated, and project scope to be negotiated, before final
commitments are made”6. It is understood that a web service
is software and its functionality can be measured in terms of
the functions it has to offer.

To incorporate the frictional drag due to functions spec-
ified, we have assumed that there are a fixed number of
cracks in each zone on the surface. The number of functions
defined by a service’s Interface act as filler to fix the cracks.
Mathematically,

LoCr = θ − µ (2)

where, θ is the fixed number of cracks assumed, µ is the
number of functions offered by a service. The friction offered
due to the number of functions is defined as:

fo = LoCr (3)

It should be pointed out that this frictional drag might not
be of any importance to a normal human being. However, this
drag is of special interest to intermediaries, resource aggre-
gating agents, IT or business organizations requiring either
gray or black box views, to enrich existing infrastructure,
enhance functionality etc (USDL, the functional module).

To combine the two frictional drags, a computationally
inexpensive linear combination strategy was employed. The
combined frictional drag offered by a node is defined as
follows:

f = α
fw

T
+ (1− α)fo (4)

where, α is the bias parameter in the range [0,1], T is a
constant, added in the equation to make the two frictional
drags addable (Since, consistent dimensions are required for
addition, fo is dimensionless).

It is a known fact that all the drops of water have the same
density. Now, considering all the drops have same size, we
can say their mass is same. Therefore, the force of gravity
mg, is the same for all the drops. The resultant force (or just
force) experienced by a drop (or a request) while drifting is
equal to

Fr = Fg − f (5)

where, Fr represents the resultant force, Fg is the force
of gravity and f is the frictional drag offered by a service

6http://www.totalmetrics.com/function-point-
resources/whatarefunctionpoints



node. It should be noted, the value of Fg is common for
all the nodes and requests. Using the concepts of motion in
classical physics, the request will move to a service node that
has the maximum resultant force. Therefore, each subsequent
request is passed to a lower level node so that the resultant
force is maximum.

Fx > ∀yFy;x, y ∈ level(i);x 6= y (6)

where, Fx and ∀y Fy are the resultant forces offered by
Services Sx and Sy(Service set) at the same level i. level(i)
is the set of all the nodes offering similar functionality.

As outlined earlier, we have used event based updates.
In the model, it could happen that a service does not send
its force value at all. It implies the service is dead and
there are reliability problems. This situation is similar to
the immobile bulge formation on the surface i.e no matter
how many requests come in at this node, none shall move
ahead. We also discussed the importance of the trail left
behind by a drop to reduce the frictional drag. In the model,
it is analogous to the fact that the updated force value a
node is offering has not been received yet. Hence, there is
no additional computation involved (extra processing time
for updating force value in the force table) to send out the
next request. In the results section, the importance of event
based updates, update interval, the processing overhead etc
is discussed.

E. Observations in the Proposed Model

1) Observation I: We present a mapping of force value
as a function of event time. By event time, we imply an
occurrence of a business rule, a system event, a bus event
etc. Consider a node Si at the upper functional level (the
workitem set) n, wants to send a request to the chosen node
Sj , at the lower functional level n+1 (the next workitem set).
Further, consider at time t the queue size of Si is σ and queue
size of Sj is τ . Now, at time t+δ, φ and β requests arrived
and completed at node Sj . According to equations (4) and
(5), the force value for the two cases is shown below.

Frj(t) = Fg − α
(τts(j) + tf (ij))

T
+ (1− α)(θ − µ) (7)

or,

Frj(t+δ) = Fg−α
((τ + φ− β)ts(j) + tf (ij)

T
+(1−α)(θ−µ)

(8)
Subtracting, 7 from 8, we get

Frj(t+ δ)− Frj(t) = −α
(φ− β)ts(j)

T
(9)

or,

Frj(t+ δ) = Frj(t)− α
(φ− β)ts(j)

T
(10)

This implies, if the rate of arrival of new requests is more
that the request completion rate, then the force value will
decrease. Otherwise it will increase. The rate of increment
or decrement is governed by the parameter α. Therefore, the

parameter α plays an important role in service composition.
The importance of α is also discussed in the results section.

Figure 1: InterRelation Diagram

Based on the discussion in this subsection, it can be
deduced that the three entities viz. the force value, the queue
size, and the arrival rate are interrelated.

III. RESULTS

For comparing the composition technique, we have chosen
three other techniques viz. [5], [6] and Queue size Based
Selection. The work in [5] and [6] are the two closest
techniques in literature utilizing the waiting time criteria for
service composition. A runtime SOA testbed was developed
in JAVA language for the purpose of experimentation. The
services exchanged simple strings and performed some pro-
cessing. While configuring the experimental setup, it was
observed that the execution time of each service and the
flow time between each pair of service is less. Therefore,
to simulate real world behavior, the invoking thread of each
service was made to sleep for a random amount of time.
The experiments were conducted on a laptop computer with
Intel i7 Quad-Core processor, 2.4 Ghz and 8 GB RAM.
It is worth pointing out, the testbed with a DSB and a
true Semantic data space is left as a part of the future
work. Therefore, stubs were written for both the BC and
the listener components outlined above. However, a DSM
(MozartSpace7) (distributed over multiple nodes) deployed
as an SOA application was used as a stable storage location.
For the purpose of comparison, Figure 2A was executed 1000
times. Though, the Figure depicts a simple workflow with
redundant services, our motive was to check the feasibility
of the proposed solution in decentralized execution and
equitable load distribution. The application container for the
web services was Apache Tomcat v7.0.41.

A. Behaviour of the Completion and Waiting Times

In Figure 4, the Standard Deviation of the proposed
model w.r.t other techniques is presented. As visible from
the Figure, the standard deviation for the proposed model,
compared to other three techniques, is less. Hence, the
proposed model achieved equitable load distribution without
compromising the quality of experience of a user. Leitner
et al states “The user needs quality metrics which describe
the quality of the business transactions in an end-to-end
fashion” [7]. In our view, the waiting time and the completion
time are one of the metrics. Moreover, the stability of a

7http://mozartspaces.org



Figure 2: Experimental Workflows

Figure 3: Request Completion Time

system is thoroughly tested in times of severe load. The fact
that the proposed model balanced load efficiently implies no
node is overloaded, hence one can achieve and maintain the
stability without compromising execution efficiency, which
is crucial in todays IT environments.

Next, in Figure 3 the completion time for different tech-
niques is presented. The figure demonstrates only a few
events (for the purpose of visual clarification). It is observed,
there exists a few situations where the completion time of the
proposed model is high. However, in Figure 5 the average
completion of all the events is shown. It can be seen from
this Figure that the proposed model produces a low value
of average completion time. Hence, the model also achieved
fast job turn-around time. It should be noted here, that the
two techniques [5] and Queue based selection model, does
not take the criteria of flow time into consideration. This
assumption is rather unrealistic. Since, in the future internet
we believe due to network constraints passage of data
between two resources will be difficult. Hence, considering
this criteria while selecting a service will help in a quick
turnaround time.

B. Impact of α

During analysis, several different configurations of α were
tested. Different values of α, with a step size of 0.2 were cho-
sen for the purpose of experimentation. In the experiments
conducted, standard deviation, completion time etc was also
calculated. Due to space constraints and visual clarification

Figure 5: Average Completion Time

issues, only average completion time is presented. As visible,
a low value of average completion time was observed when
α is equal to 0.2. However, the optimal value of α kept
changing with different configurations. But, it was noticed
that the optimal value of α was always between [0.2, 0.6].
Theoretically, we expected a low completion time when α
was 1. However, owing to the parameter of the flow time,
an optimal value was observed only after exploration and
experimentation.

Figure 6: Average Completion Time Different α

C. Impact of Different Event Times

In addition to the experimentation with various combina-
tions of α, experiments were conducted with different values
of event time. In the proposed model, event time is important
because it is at this time the force values are exchanged.
A variation in the ‘Force Table’ at the local resource will
cause dynamic reconfigurations of the composition structure.
Hence, experiments were conducted to test the importance
of the event time as well. In Figure 7, we have shown
average completion times with various values of event time.
We expected the average completion to be minimum when
the event time is less. But, in the results a low completion
time was achieved when the event time was 4 seconds. It
was found that beyond the limit of 8 seconds the values kept
increasing. From this observation, it can be conclusively said
that the update interval must neither be short nor long.

D. Communication Overhead

We also calculated the communication overhead involved
during execution in terms of data exchanged between ser-
vices for the Figures 2B and 2C . The amount of data
exchanged is compared with a centralized orchestrator con-
trolling and selecting services. Different sizes of data was
chosen for the purpose of experimentation viz. 30 bytes,
90 bytes and 361 bytes. The data analysis was via the tool
Wireshark8 with Ubuntu 12.04 LTS OS.

8http://www.wireshark.org



Figure 4: Standard Deviation Waiting Time

Figure 7: Average Completion Time with Different Event
Time

Figure 8: Data Exchange Service Domain B and C

The total amount of data exchanged is shown in Figure
8. As visible, the amount of data exchanged is less in
the decentralized scheme. Therefore, the model not only
executed the application quickly, but also requires a less
amount of data exchange. It was also observed that amount
of data exchanged kept increasing for a centralized orches-
trator when the size of a workflow increased. From this
observation, we can conclude that when exchanging ‘Big
Data’ via a centralized scheme, not only the execution time
will increase, but the load on the network will increase
as well. In the context of the Future Internet, this is a
troublesome issue. Hence, to execute scientific applications
a decentralized scheme is far better than the centralized
scheme.

IV. RELATED WORK

In this section, we discuss some of the related work in the
field of service composition. Very close to our work are the
two techniques [5] and [6]. These techniques also focus on
the parameter of the waiting time. [5] is a technique based
on queuing theory where concepts are customized to cater
to the requirements of service composition. The technique
enabled a rough estimation of the waiting time expected at
a Web service. Similar to [5], is a model presented in [6].
Here, a technique borrowed and customized from real world
friction is presented. The technique also accommodated the
parameter of waiting time. However, it was shown in the
results section that the proposed model, outperforms both the
two predecessors. A dynamic QoS aware subjective-objective
approach for ‘optimal strategy configuration determination’
is proposed in [17]. The approach showed good performance
over existing traditional strategies. A self-* framework for
configuring and adapting services at runtime was proposed in
[18]. The framework, PAWS, delivered self-optimization and
guarantee guaranteed service provisioning even in failures.
In literature, various techniques also focus on the metric of
end-to-end delay, with network latency to compose services
in a cloud based environment [19], [20]. We also focus on
such parameters via the proposed metric ‘flow time’.

Nature inspired metaphors have recently caught some
attention in the services sector. Inspired from such metaphors
a technique is presented in [12]. Similar to our rain metaphor,
the author in the paper focus achieving a decentralized work-
flow execution with a chemistry metaphor. However, they do
not focus on balancing load among similar services. Very
close to the work presented here is [10], the authors focus
achieving orchestration and choreography with the chemistry
metaphor. However, they relied on conventional workflow
execution mechanism. We on the other hand, proposed a
new framework for decentralized workflow execution. We
also relied on a decentralized DSM for parameter exchange.



Further, we proposed a novel composition mechanism. No
dynamic selection was done in [10], moreover a single
service was instantiated for a workitem. A technique to enact,
verify, and execute a service choreography is presented in
[14]. However, similar to [12] and [10], the author introduced
an extra choreography layer, requiring major changes in
the underlying implementation of web services. We on the
hand, achieved choreography with the existing infrastructure.
Moreover, we focused on the composition from a greedy
point of view. The technique do not talk about load balanc-
ing and dynamic adaptations. Also, the choice of services
executing the workitems is fixed.

V. CONCLUSION AND FUTURE WORK

In this paper, a decentralized deployment framework and a
composition technique was proposed. The experiments were
conducted via a SOA test-bed. Preliminary testing demon-
strate good performance of the proposed solution. The model
in based on the state-of-the-art Middleware and Semantic
space to achieve service choreography. The composition
technique outperformed similar techniques in literature in
terms of average waiting time and job completion time.
Future work includes a full scale development of the pro-
totype with a true semantic space and DSB. Further, the
execution of the web services and their composition will be
accomplished on a grid based facility, thereby studying the
effect of geographically distributed nodes, real world low
bandwidth and high latency environments.

REFERENCES

[1] Marechaux, Jean-Louis. “Combining service-oriented architec-
ture and event-driven architecture using an enterprise service
bus.” IBM Developer Works (2006): 1269-1275.

[2] Baude, Franoise, Imen Filali, Fabrice Huet, Virginie Legrand,
Elton Mathias, Philippe Merle, Cristian Ruz et al. “ESB feder-
ation for large-scale SOA.” In Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2459-2466. ACM,
2010.

[3] Zimmermann, Alfred, Michael Pretz, Gertrud Zimmerman-
n, Donald G. Firesmith, and Ilia Petrov. “Towards Service-
Oriented Enterprise Architectures for Big Data Applications in
the Cloud.” In Enterprise Distributed Object Computing Con-
ference Workshops (EDOCW), 2013 17th IEEE International,
pp. 130-135. IEEE, 2013.

[4] Issarny, Valrie, Nikolaos Georgantas, Sara Hachem, Apostolos
Zarras, Panos Vassiliadist, Marco Autili, Marco Aurlio Gerosa,
and Amira Ben Hamida. “Service-oriented middleware for the
Future Internet: state of the art and research directions.” Journal
of Internet Services and Applications 2, no. 1 (2011): 23-45.

[5] Srivastava Abhishek, and Paul G. Sorenson. “Utilizing the
Waiting-time Criterion for Selecting Services in a Composition
Scenario.” In Services Computing (SCC), 2010 IEEE Interna-
tional Conference on, pp. 258-264. IEEE, 2010.

[6] Ahmed Tanveer, and Abhishek Srivastava. “Minimizing Wait-
ing Time for Service Composition: A Frictional Approach.” In
IEEE 20th International Conference on Web Services (ICWS),
2013, pp. 268-275. IEEE, 2013.

[7] Leitner, Philipp, Anton Michlmayr, Florian Rosenberg, and
Schahram Dustdar. “Selecting web services based on past
user experiences.” In Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, pp. 205-212. IEEE, 2009.

[8] Leite, Leonardo AF, Gustavo Ansaldi Oliva, Guilherme M.
Nogueira, Marco Aurlio Gerosa, Fabio Kon, and Dejan S.
Milojicic. “A systematic literature review of service choreogra-
phy adaptation.” Service Oriented Computing and Applications
(2012): 1-18.

[9] Cardoso, Jorge, Konrad Voigt, and Matthias Winkler. “Service
engineering for the internet of services.” In Enterprise Infor-
mation Systems, pp. 15-27. Springer Berlin Heidelberg, 2009.

[10] Wang, Chen, and J. Pazat. “A Chemistry-Inspired Middleware
for Self-Adaptive Service Orchestration and Choreography.”
In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, pp. 426-433. IEEE,
2013.

[11] Cardoso, Jorge, Alistair Barros, Norman May, and Uwe Kylau.
“Towards a unified service description language for the internet
of services: Requirements and first developments.” In Services
Computing (SCC), 2010 IEEE International Conference on, pp.
602-609. IEEE, 2010.

[12] Fernandez, Hctor, Cdric Tedeschi, and Thierry Priol. “A
Chemistry Inspired Workflow Management System for Decen-
tralizing Workflow Execution”, IEEE Transactions on Services
Computing, doi: 10.1109/TSC.2013.27 (pre-print).

[13] Leitner, Philipp, Florian Rosenberg, and Schahram Dustdar.
“Daios: Efficient dynamic web service invocation.” Internet
Computing, IEEE 13, no. 3 (2009): 72-80.

[14] Barker, Adam, Christopher D. Walton, and David Robertson.
“Choreographing web services.” Services Computing, IEEE
Transactions on 2, no. 2 (2009): 152-166.

[15] Koulouzis, Spiros, Reginald Cushing, Konstantinos A.
Karasavvas, Adam Belloum, and Marian Bubak. “Enabling
web services to consume and produce large datasets.” Internet
Computing, IEEE 16, no. 1 (2012): 52-60.

[16] Su, Jianwen, Tevfik Bultan, Xiang Fu, and Xiangpeng Zhao.
“Towards a theory of web service choreographies.” In Web
Services and Formal Methods, pp. 1-16. Springer Berlin Hei-
delberg, 2008.

[17] Zheng, Zibin, and Michael R. Lyu. “An adaptive QoS-aware
fault tolerance strategy for web services.” Empirical Software
Engineering 15, no. 4 (2010): 323-345.

[18] Ardagna, Danilo, Marco Comuzzi, Enrico Mussi, Barbara
Pernici, and Pierluigi Plebani. “Paws: A framework for exe-
cuting adaptive web-service processes.” IEEE software 24, no.
6 (2007): 39-46.

[19] Ye, Zhen, Xiaofang Zhou, and Athman Bouguettaya. “Genetic
algorithm based QoS-aware service compositions in cloud
computing.” In Database Systems for Advanced Applications,
pp. 321-334. Springer Berlin Heidelberg, 2011.

[20] Klein, Adrian, Fuyuki Ishikawa, and Shinichi Honiden. “To-
wards network-aware service composition in the cloud.” In
Proceedings of the 21st international conference on World Wide
Web, pp. 959-968. ACM, 2012.


