
Service Choreography: Present and Future

Tanveer Ahmed, Abhishek Srivastava
Discipline of Computing Science

Indian Institute of Technology Indore
Indore, India

Email: {phd12120101, asrivastava}@iiti.ac.in

Abstract—Service oriented architecture is widely adopted, accepted
and appreciated for both horizontal and vertical integration of
enterprise applications. The success is hugely aided by web service
composition, which is a temporal collaboration of independent and
loosely-coupled web services to execute a business process at runtime.
In the Future Internet, the present practice of composition, the most
popular variant of which is service orchestration, is expected to face
a lot of problems due to its inherent centralized orientation. As a
result, service choreography is widely viewed as an ideal replace-
ment candidate. However, achieving a decentralized collaboration
of autonomous, ‘non-aligned’ and loosely-coupled web services is
a challenge. To systematically enact a web service choreography,
the present infrastructure has to address several complications.
In this paper, we present several atypical issues faced by service
choreography and the technological advancements required for its
enactment. Based on the proposed solution, we develop a prototype
with ‘stateless’ RESTful web services. The entire prototype is deployed
in-house (within the Institute) on a virtualized platform.

Keywords-Service Oriented Architecture, Service Choreography,
Future Internet

I. INTRODUCTION

Due to the proliferation of web services, the service oriented
architecture is witnessing its peek. This architecture has always had
an orientation towards loosely coupled, platform independent and
autonomous web services. The web services combine dynamically
at runtime and form a temporal collaboration, commonly referred
to as web service composition, to execute either a business process
or a data & compute intensive scientific application. However, the
present composition practice, service orchestration, face several
challenges in the context of fault-tolerance and being a single
point of failure. This downside is due to its inherent centralized
alignment. In this context, we believe service choreography is ‘the’
solution.

As is evident today, the Internet is rapidly and continuously
evolving towards the Future Internet [1]. One of the constituents
of the Future Internet, Internet of Services, aims at making
services tradeable, discoverable and marketable at runtime. To
address this paradigm shift, the present standard of describing
services (e.g. WSDL for SOAP based and WADL for RESTful),
and the execution procedure needs a second thought. We argue
the present implementation architecture and infrastructure can’t
execute services and achieve a service choreography at the same
time. The reason for this line of questioning is outlined in a few
following points:

1) Since service choreography is enacted through a description
language, e.g. WS-CDL, how do an autonomous service interpret
the description, the execution order, the elements specified in the
XML schema etc.? The present implementation of web services is
out of scope for this purpose.

2) ‘Hypothetically’, if the service can somehow perceive the
syntax and the language, then they need a specialized proxy

parser for different description standards proposed in literature
(BPELChor, LetsDance etc), again not in the present protocol
stack.

3) How do the present implementation of services manage the
context information? e.g. if a single service is ‘dancing’ with
multiple services, then how should a service become self-aware
about intiating the appropriate choreography. Moreover, consider
‘RESTful’ architecture, the present stateless protocol suite does
not allow context or resource storage to be ‘stateful’, let alone
self-aware.

4) As envisioned, the Future Internet will host services on
wireless devices(e.g. PDAs, IoT sensors etc.), with severe battery
constraints. Under these circumstances, the issue of reliability
is inevitable. In service choreography, there is no centralized
controller, therefore, in this context how to recuperate from a failed
or a partially failed choregraphy.

5) In 2013, the Internet hosted more than 3.5 billion devices [1].
By 2020, the number is expected to rise to ‘26 billion’1. In this
context, the network and congestion issue would be appalling. In
this environment, what is the ideal medium to exchange data and
parameters among services. Should the services share a memory or
should they exchange messages directly? If they share a medium,
then how to direct a ‘non-aligned’ service to read from and write to
the storage? Preserving the storage location is another issue (point
3).

In this paper, we present a possible solution to the questions
asked above. The technological approach is devised, keeping in
mind the present infrastructure and resources. To demonstrate
the viability in actual deployment, we have developed a web
based prototype for achieving service choreography with ‘RESTful’
services. The entire prototype is validated by executing a service
choreography on a virtualizated platform (XENServer).

II. PROPOSED MODEL

The technological solution presented in this paper, relies on some
of the existing works in literature, and software implementations
available in the open source community. We lay these technological
foundations as a stepping stone to present the solution. It should be
pointed here that some works in literature, e.g. [3] [4] etc., propose
addition of an extra layer or an extra interface on top of a service.
To practically deploy such schemes, require significant changes in
the existing implementation of web services. Our motivation is to
remove the extra layer, use the existing infrastructure, and enact a
service choreography. We discuss the proposed work in this section.

In the Future Internet, we envision all type of services, whether
Human Provided Services or Software Provided Services (SOAP
or RESTful), to become tradeable and executable. In this scenario,
the ideal candidate for describing all the essential properties is the

1http://www.gartner.com/newsroom/id/2636073



‘Unified Service Description Language’ (USDL)2. USDL is a com-
prehensive suite, describing services from multiple perspectives,
e.g. Pricing, Function, Service Bundle, SLA, Legal etc. In the pro-
posed model, we rely on this language for service description. We
also envision compute intensive scientific applications to become
executable (decentrally) via service oriented architecture, deployed
on a cloud based infrastructure. Therefore, to tackle the issues
outlined previously, we root the technological groundings in 1)
Cloud Computing 2) Distributed Federated Enterprise Service Bus
(DSB) 3) Event Driven publish-subscibe architecture 4) Semantic
Space.

In the last few years, cloud computing paradigm has emerged
as a prospective candidate addressing a wide exhibit of computing
necessities. In our opinion, the cloud, or the ‘federation of clouds’
is the ideal backbone to enact a service choreography.

To answer the questions asked in points 1-3, and to cater to
the requirements of a stable delivery platform, we rely on a
‘Distributed Federated Enterprise Service Bus’(DSB). Though a
prototype DSB is proposed in [2], but the implementation is not
sufficient to enact a service choreography. The focus of [2] is
to serve the needs of the Future Internet only. The prototype, as
described in [2] uses Binding Component(BC) to plug executable
services onto the DSB. We propose a few extensions. First, the
BC must be extended with the functionality required to parse the
context information described via multiple description languages.
In the proposed work, this component also acted as the proxy
parser. Second, the listener component (the default component
for each service in the Middleware) of each service should allow
context information (for a resource or storage location) to be stored
locally. In this way, without adding an extra layer on the devices
itself, services (even implementing the RESTful framework) can
communicate and invoke each other independently. Due to space
constraints, we don’t discuss much. However, a comprehensive
discussion on the Middleware is available in [2].

To address the congestion related issues raised above (point
5), one of the proposals, the proposed work rely on is: event
driven architecture. The event driven publish-subscribe model has
garnered a significant attention from both academia and industry,
therefore reliance on such an architecture to exchange messages
among services, is the ideal choice. The services participating in a
service choreography should follow this architecture, as it allows
a ‘throttled’ load on the underlying network, and also prevents
a pointless power consumption, especially in the case of mobile
devices.

To deliver a stable storage medium for parameter retention,
traceability analysis etc. (point 5), a semantic space is utilized
(At this point, it is understood that the listener component can
maintain the storage location). Semantic space is a coalition of
multiple technologies. The semantic data space is accessible via
existing protocols, provide virtualization of heterogeneous data
centers, and is deployable on cloud. Moreover, the storage itself
is offered as a web service, thereby affirming to the standards of
SOA. A state-of-the-art implementation is available in OpenLink
Data Spaces3. Next, we address reliability (point 4), and the issue
with the underlying Middleware.

It is a known fact that a ‘distributed’ ESB, e.g. Petals, deliver
messages no matter if a service is available or not4,5. It should

2http://www.internet-of-services.com/index.php?id=264
3http://virtuoso.openlinksw.com/
4https://doc.petalslink.com/display/petalsesb31/Petals+Enterprise+Service+Bus
5http://en.wikipedia.org/wiki/Enterprise service bus

be noted here that the prototype proposed in [2], extended this
open source implementation. The basic implemented architecture
(of Petals) allow two types of deliveries: Fast and Reliable. We
believe in real time business applications (in such scenarios it is
understood that fast mode is not desirable, for obvious reasons),
availability is an important criteria. For example, if one is executing
a case-oriented workflow, e.g. StockQuotes during Peak Hours,
without the centralized controller, then the ‘reliable-mode’ will
wait for the temporarily unavailable service to be plugged in again.
For time critical applications, this is problematic. Therefore, to
address the issue of reliability, a ‘workitem’ must be instantiated
with redundant services available for immediate execution. The
services should be discovered well in advance, thereby removing
the process of re-inventing the wheel (discovering service again
from ‘Hybrid’ registries). Although, the functionality of dynamic
discovery can be added, but it is noteworthy that the availability
of redundant services allows for the inherent capabilities of load
balancing, dynamic adaptations and a reduced execution time. The
selection of a service, in that case should be grounded on an
inexpensive, lightweight and a greedy technique.

Lastly, recovery. As far as recovering from a failed or a partially
failed choreography is concerned, there are two choices: 1) Rely
on the services in the upper hierarchy to re-initiate the blocked
process flow or 2) Depend on a third party, e.g. the DSB itself, to
recover the choreography. To rely on an autonomous web service
is a rather strong assumption. Therefore, reliance on the third party
is the only choice. Recovering from a failed choreography makes
room for further development.

III. PROTOTYPE DEVELOPMENT

A quick prototype, based on the proposed solution was devel-
oped. RESTful web services with listener and binding component
was developed using JAVA programming language. The present
implementation does not include a DSB and a true semantic space.
Therefore, stubs were programmed for the two components, and
only a distributed shared memory (DSM), e.g. MozartSpace6, was
implemented. The distributed shared memory itself was offered
as a service, thereby the entire communication was based on the
alliance of the service oriented architecture and the event driven
architecture. The services were deployed on a Quad-Core Processor
with 8 GB RAM, on a virtualized platform within the computing
lab of the Institute.

REFERENCES

[1] Issarny, Valrie, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras,
Panos Vassiliadist, Marco Autili, Marco Aurlio Gerosa, and Amira
Ben Hamida. “Service-oriented middleware for the Future Internet:
state of the art and research directions.” Journal of Internet Services
and Applications 2, no. 1 (2011): 23-45.

[2] Baude, Franoise, Imen Filali, Fabrice Huet, Virginie Legrand, Elton
Mathias, Philippe Merle, Cristian Ruz et al. “ESB federation for large-
scale SOA” In Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 2459-2466. ACM, 2010.

[3] Barker, Adam, Christopher D. Walton, and David Robertson. “Chore-
ographing web services” Services Computing, IEEE Transactions on
2, no. 2 (2009): 152-166.

[4] Fernandez Hector, Cedric Tedeschi, Thierry Priol. “A Chemistry
Inspired Workflow Management System for Decentralizing Work-
flow Execution”, IEEE Transactions on Services Computing, doi:
10.1109/TSC.2013.27 (pre-print).

6http://mozartspaces.org/


