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Course Structure - I

Instructors : Dr. Bhargav Vaidya (Course Coordinator), Dr. Amit Shukla [email :
amit.shukla@iiti.ac.in ]
Teaching Assistant : Arghyadeep Paul [ email : phd1901121007@iiti.ac.in ]

Review of Statistical Mechanics (Week 1) : Concept of phase-space, Louisville
Theorem, Distribution Function, Maxwell-Boltzmann Model, Fluid motion:
Streamlines and Path-lines. Concept of fluid parcel.

Hydrodynamic Equations (Weeks 2 and 3) : Eulerian and Lagrangian
Framework Mass, Momentum and Energy conservation along Laws of
Thermodynamics, Equation of state. Concept of Steady state, Effect of Gravity
and Rotation, Virial Theorem, Centrifugal forces, Vortex flows. Viscous vs
Inviscid flow, Bernoulli Equation.

Applications of HD Equations (Weeks 4 and 5) : Accretion Disk, Hydro-static
equilibrium and its application in star formation, Bondi Accretion and Parker
Solar Wind. Concept of Shocks, Rankine-Hugoniot jump conditions.

MID SEMESTER EXAMINATION (MSE)
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Course Structure - II

Shock physics (Week 6) : Revision of Shocks : Adiabatic and Isothermal
shocks, Application to Supernova Remnants and Jets.

Hydrodynamic Instabilities (Week 7) : Concept of Linear perturbation theory,
Kelvin Helmholtz Instability and Rayleigh Taylor Instability

Review of Plasma Physics (Weeks 8-9) : Revision of Maxwell Equation,
Plasma Properties, Motion of charged particle in EM field, Discharge physics.

Magneto-hydrodynamics (Week 10) : Concept of Ideal MHD, Flux Freezing,
Introducing MHD Conservation Equation

END SEMESTER EXAMINATION (MSE)
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Standard References

1 Physics of Fluids and Plasmas by Arnab Ray Choudhari

2 Astrophysical Plasmas and Fluids by Vinod Krishan

3 Plasmas: The First State of Matter by Vinod Krishan

4 Principles of Astrophysical Fluid Dynamics by Cathie Clarke
and Bob Carswell

5 An Introduction to Astrophysical Fluid Dynamics by Michael J
Thompson
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Marks Division

Mid-Semester Examination : Weightage 20%

End-Semester Examination : Weightage 40%

Continuous Evaluation : Weightage 40%
1 Quizzes
2 Take Home Assignments
3 Mini Numerical Projects
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Astrophysical Fluids Dynamics : Area of Application.

Important Areas of applications include -

Instabilities in astrophysical fluids

Convection in stars

Differential rotation and meridional
flows in stars

Stellar oscillations

Astrophysical dynamos

Magnetospheres of stars, planets and
black holes

Interacting binary stars and
Roche-lobe overflow

Tidal disruption and stellar collisions

Supernovae

Planetary Nebulae

Jets and winds from stars and discs

Star formation and the physics of
the interstellar medium

Astrophysical discs

Other accretion flows (Bondi,
Bondi–Hoyle, etc.)

Processes related to planet formation
and planet–disc interactions

Planetary atmospheric dynamics

Galaxy clusters and the physics of
the intergalactic medium

Cosmology and structure formation
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Astrophysical Fluids Dynamics : Area of Application.

Astrophysical fluid dynamics (AFD) is a theory relevant to the
description of the interiors of stars and planets, exterior
phenomena such as discs, winds and jets, and also the interstellar
medium, the intergalactic medium and cosmology itself.
A fluid description is not applicable -

in regions that are solidified, such as the rocky or icy cores of
giant planets (under certain conditions)

the crusts of neutron stars

in very tenuous regions where the medium is not sufficiently
collisional.
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Astrophysical Flows

Supernova Remnant : Tycho

Solar Coronal Mass Ejection

Cygnus A:

Supermassive 
Black Hole

Stellar Mass 
Black Hole

Crab Nebula 

Neutron Star
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Partial Derivatives : Basics

Chain Rule : Consider a function f (x , y) and suppose x and y
depend on another variable s i.e., x(s), y(s). Then

df

ds
=
∂f

∂x

dx

ds
+
∂f

∂y

dy

ds

Product Rule :
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x

Commutation Rule

∂2f

∂x∂y
=

∂2f

∂y∂x
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Review of Statistical Mechanics

Concept of Phase Space

Concept of Ensemble and Liouville Theorem

Introducing Equations in Phase space :
1 Collision-less Boltzmann Equation
2 Vlasov Equation.
3 Collision Terms : Fokker Planck, Boltzmann Model

Concept of Fluid and its description.
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Phase Space

Consider a system of N particles. The time evolution of such a system is
governed by the Hamiliton’s equation for a given initial conditions.
The Hamiltonian H is a function of canonically conjugate variables : the
generalized co-ordinates q1, q2, ... ,qN , corresponding momenta p1, p2,
... ,pN and time t.
Hamilton’s Equation are -

dqi

dt
=
∂H

∂pi
;
dpi

dt
= −∂H

∂qi

Therefore, at any given time the system is completely defined if the
Hamilton H and initial conditions are known.
Mechanical state of the system → single point in a 2N dimensional space.
Evolution of that single point → 2N vectors equations given above.

Such a 2N dimensional space made up of N generalized co-ordinates q1,

q2, ..., qN and N momenta p1, p2, ..., pN is called the Phase space.
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Function in Phase Space

Consider a function f (q,p, t) of the 2N variables defined in phase
space, then its derivative is given by

df

dt
=

∂f

∂t
+

N∑
i=1

∂f

∂qi
· dqi

dt
+

N∑
i=1

∂f

∂pi
· dpi

dt

=
∂f

∂t
+ [f ,H]

where [f, H] is called the Poisson bracket and its value is 0 if f is a
constant of motion.
Exercise : For a system where Hamilton has no explicit time
dependence, prove that the total energy of the system is
conserved. What happens when the Hamilton does not have
explicit dependence on say qk ?
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Gibb’s Ensemble

A collection of identical systems that represent the same average
properties is called an Gibb’s Ensemble.

For example, in a harmonic oscillator the total energy is given as
p2 + q2, and this we know remains invariant throughout the
motion. Thus each pair (p, q) that preserves this in-variance is a
member and a collection of such members forms an Ensemble.

Define density as the number of members in a volume
dq1...dqNdp1...dpN of the phase space at a given instant of time
t.

ρ(q1,q2, ...,qN ,p1,p2, ...,pN , t)dq1...dqNdp1...dpN (1)
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Liouville Theorem

Liouville Theorem : The density of states in an ensemble of many
identical states with different initial conditions is constant along
every trajectory in phase space

44 CHAPTER 2

Ensemble

Ensemble

(1)

t
(2)

dp
- =0
dt

Figure 2.1. Time Evolution of a Many-Body System in the Phase Space.

We may recall that the motion of a system from point (1) in the phase
space to another point (2) represents the time evolution of the canonical
transformation which connects these two points (Figure 2.1 ). A volume
element in the phase space remains invariant under a canonical transfor-
mation. All the members in a given volume around point (1) will end up in
the same volume around point (2) following Newton's laws. Thus both the
number of members as well as the volume element they lie in, remain con-
stant as the system evolves. Hence, the density P also remains an invariant
so that,

dp = 0
dt '

or
8p
8t = -[p,H]. (2.7)

This is the Liouville Equation.
It has been shown that finding the solution of the Liouville equation is

the same as the integration of the canonical equations of motion. Therefore,
for large systems, it is much more advantageous to deal with a single Liou-
ville equation, which describes the entire system. In statistical equilibrium
the density p does not depend on time explicitly i.e., (8pj8t) = O. The
equilibrium can, therefore, be described as [p, H] = O. Thus a system is in
equilibrium if its phase space density p is a function only of the constants
of the motion which do not explicitly depend upon time. For a conservative
system in equilibrium, p is only a function of energy. Specific choices of the
functions will determine the properties of a system. An example is a micro-
canonical ensemble for which p is a constant for a system having a given
energy and zero, otherwise. The linearity of the Liouville equation enables
the use of the Superposition Principle; i.e., if PI and P2 are solutions then
their linear combination will also be a solution of the Liouville equation.
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What the Liouville Theorem does not mean ?

Liouville’s theorem does not imply that the density is uniform
throughout phase space. In particular, if the Hamiltonian preserves
energy, then one trajectory cannot visit two parts of phase space
with different energy.

Liouville’s theorem does not imply that every point along a given
path has the same density. In other words, suppose that two
particles, A and B, follow the same trajectory, except that particle A
leads particle B by a finite time (or equivalently, there is a finite
distance in xp space between the two particles). Particle A could be
in a region of different density than particle B.

Liouville’s theorem only holds in the limit that the particles are

infinitely close together. Equivalently, Liouville’s theorem does not

hold for any ensemble that consists of a finite number of particles;

instead the theorem describes the probability density in phase space

of an ensemble consisting of an infinite number of possible states.
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Liouville Equation

This equation governs the time evolution of density ρ in phase
space -

dρ

dt
=
∂ρ

∂t
+ [ρ,H]. (2)

From the the Liouville’s theorem we have L.H.S. = 0

∂ρ

∂t
= −[ρ,H]. (3)

Rather than solving set of canonical equations, we can determine
the trajectory of system through just the above equation.
Exercise: Derive the Proof of the Liouville theorem.
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Distribution Function

The probability of finding the system in a volume element
dq1...dqNdp1...dpN is given by the function -

ρ(q1,q2, ...,qN ,p1,p2, ...,pN , t)dq1...dqNdp1...dpN (4)

The specific functional form of ρ in terms of constants of motion is
known as the Distribution function.

According to Liouville’s theorem, we will have for a distribution of N
particles -

d

dt
fN (q1,q2, ...,qN ,V1,V2, ...,VN , t) = 0 (5)

One particle distribution function - f1(q1,V1, t)dq1dV1 is the
probability of finding one particle in a volume element dq1dV1 of
the phase space and is obtained by integration of fN over all other
co-ordinates (q2,q3, ...,qN ,V2,V3, ...,VN )

Similarly, a two particle distribution function - f2(q1,q2,V1,V2, t)
can be defined. This represents joint probability of finding the two
particles.
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Collision-less Boltzmann Equation

The collision-less Boltzmann Equation can be derived using the
Liouville’s theorem and it can be shown that -

∂f1
∂t

+ V1 ·
∂f1
∂q1

+
Fext

m

∂f1
∂V1

= 0 (6)

Several applications of this equation in Astrophysics -

Study of Stellar motion in the Galaxy or star cluster. :
Fext = −m∇φg Poisson Equation : ∇2φg = 4πGρm(r, t)
where ρm(r, t) = m

∫
f (r,V, t)dV

Collision-less plasma : The one between Sun and Earth –
Space Weather The external force includes an additional term
from the Lorentz Force. The Collision-less Boltzmann
Equation for plasma in presence of electric field E and
magnetic field B is called the Vlasov Equation.
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Collision Term

In general, the Liouville’s Equation for distribution function also
has Collisional Terms due to presence of other particles/stars etc.
especially in regions of high density.

Krook Collision Model - RHS = − 1
τ (f1 − feq)

Question - Can you solve for f1 assuming no spatial gradients
and no-external force?

Boltzmann Collision Model - Restricts the interaction
among particles to only binary collisions. Applicable when - a)
Particle density is low so that higher order interactions can be
neglected. b) Particles experience only short range forces c)
Within the range of forces, the short range force dominates
over any external force d) The interactions are independent.
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Concept of Fluid Element

Small size ...

The size of the fluid element, lfe, should be smaller than a scale length for change of
any relevant fluid variable q -

lfe �
q

|∇q|
(7)

... yet large enough ...

But at the same time it should be large enough to contain a sufficient number of
particles so as to ignore noise due to finite number of particles (discreteness noise).
Thus for a system with n as the number of particles per unit volume, we should have

nl3
fe � 1 (8)

... to be collisional!

The size of fluid element should be large enough so that the constituent particles
know about local conditions through collisions -

lfe � λ =
1

nσ
(9)
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Validity of Fluid Approach

Collisions and Fluid Approach

The equations that govern the dynamics of fluids are essentially derived from
micro-physical considerations. The essential idea is that if particles inside a fluid
element interact with each other (not necessarily via physical collisions), then they will
attain a distribution of particle speed that maximizes the entropy of the system at
that temperature. This allows us to define fluid quantities like density, pressure and
derive a relation between then in form of Equation of state.
In some cases, in-spite of frequent collisions (i.e., tcoll � Tscale), small deviations to
the distribution function of particles can arise. These small deviations can be well
accounted for by including appropriate non-ideal effects like viscosity, heat conduction,
resistivity etc.

Fluid Approach Fails

Cases where the mean flight time of microscopic particles, < τ > is comparable to
characteristic time scale i.e., Tscale, the fluid approach is no longer valid. Alternatively,
in astrophysical systems where the mean free path, λ = 1

nσ
is comparable to

characteristic length scale, Lscale of the system, the fluid equations can not be applied.
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Validity of Fluid Approach : Exercise

Astrophysical System ρ, n T Lscale λ†

Core of Sun-like star 102gcm−3 107 K ≈ 0.05R� 2× 10−8 cm
Solar Corona 10−15gcm−3 106 K ∼ 10Mm ?
ISM-Molecular clouds 103cm−3 10K 80 pc ?
ISM-Ionized Medium 10−3cm−3 106 K 1000-3000 pc ∼ 3 pc
† NOTE : The Columb cross section for collisions, σ ≈ 10−4(T/K)−2 cm2 and
mean free path λ = 1

nσ
.

Multi-fluid, Hybrid, Kinetic Approach

In cases where the basic single-fluid approach fails, we can adopt more
complicated multi-fluid or hybrid models which allows us to treat constituent
particles separately. For example, in solar corona we can treat ions and electrons
separately and study their dynamics along with interactions among them.
The most consistent approach is the Kinetic approach, which really solves the
Boltzmann Equation from first principle, however they can not be applied to
study very large systems.
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Fluid Kinematics

Consider a fluid parcel, kinematics deals with the description of
this parcel

Streamlines Curves that are instantaneously tangent to the
velocity vector of the flow. Lets say the x(s) is a streamline
that depends on parameter s at one moment in time, then

dx(s)

ds
× u(s) = 0 (10)

Pathlines Trajectories of the fluid parcel given as -

dxp

dt
= u(xp(t), t) (11)
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Fluid Variables and Derivatives

Symbols and Meanings
Cartesian co-ordinate

x = xî + y ĵ + zk̂ and time t.

Fluid Variable Symbol

Velocity v(x, t)
Density ρ(x, t)
Pressure P(x, t)

Magnetic Fields B(x, t)

Specific Volume 1/ρ
Temperature ∝ P/ρ

Current Density ∇× B

Lagrangian v/s Eulerian
Eulerian viewpoint - Consider the variation of

properties of the fluid at a fixed point in space.

(i.e., attached to the inertial co-ordinate

system), time derivative and any quantity Q is

given by -
∂Q
∂t

Lagrangian viewpoint - Consider the variation

of properties of the fluid at a point that moves

with the fluid at velocity v(x, t), Lagranian

time derivative of quantity Q is given by -

DQ
Dt

=
∂Q
∂t

+ v · ∇Q
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More Notations and Vector Calculus

For any variable denoted by Q(x, t) ≡ Q(x , y , z, t), its partial derivatives are written
as -

Qt ≡
∂Q
∂t

,Qx ≡
∂Q
∂x

,Qy ≡
∂Q
∂y

,Qz ≡
∂Q
∂z

The dot product of two vectors A = (a1, a2, a3) and B = (b1, b2, b3) is given by -

A · B = a1b1 + a2b2 + a3b3

Given a scalar quantity φ that depends on spatial co-ordinates x , y and z, the gradient
operator ∇ as applied to scalar φ is a vector given by -

gradφ ≡ ∇φ ≡ (φx, φy, φz) ≡
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
The divergence operator applies to any vector A results in a scalar quantity -

div A ≡ ∇ · A ≡
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z
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Conservation of mass

Equation of continuity applies to all systems that conserves mass.
If ρ is the density of system in some space then

∫
ρdV is the mass within

volume V and it can change only due to the mass flux leaving across the
surface bounding that volume i.e.,

∂

∂t

∫
ρdV = −

∫
ρv · dS (12)

Using the Gauss’s Theorem we have∫ [
∂ρ

∂t
+∇ · (ρv)

]
dV = 0 (13)

implies,
∂ρ

∂t
+∇ · (ρv) = 0→ Dρ

Dt
+ ρ(∇ · v) = 0 (14)

Hence for in-compressible flows where density is constant, ∇ · v = 0.
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Conservation of Momentum-I

Newton’s second law of motion for a fluid element of mass ρδV can be
expressed as -

ρδV
Dv

Dt
= δFbody + δFsurface (15)

where, δFbody = ρδVF is a body force that acts on all points within the
body, e.g., Gravity Force. where F is the body force per unit mass.
The surface force δFsurface is the force acting on it across the surface
bounding the fluid element. We can express the surface force in terms of
the area element dS through a second-rank tensor Pij as -

(dFsurface)i = −PijdSj (16)

Implying the total force acting on the volume of the fluid element -

(Fsurface)i = −
∮

PijdSj = −
∫
∂Pij

∂xj
δV (17)

By convention, Pressure force is inward directed and area vector
dS is outward.
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Conservation of Momentum-II

Finally we can express the Newton’s second law of motion for a
fluid element as -

ρ
Dvi

Dt
= ρFi −

∂Pij

∂xj
(18)

For ideal fluids, we will assume here that force acting on an
element of area inside or at the boundary is always perpendicular
to the area element. → Pij = Pδij

Surface force not perpendicular to the area element at the
boundary is shear force → tangential stresses accounted by
viscosity.
Therefore, we have conservation of momentum equation as -

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + F (19)
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Vorticity Equation

Define vorticity ω = ∇× v
Using the vector identity

v × (∇× v) =
1

2
∇(v · v)− (v · ∇)v (20)

Using the above vector identity into the momentum conservation
equation (by taking the curl) and assuming a conservative force,
we have the vorticity equation.

∂ω

∂t
= ∇× (v × ω) +

1

ρ2
(∇ρ×∇P) (21)

What happens for a) incompressible fluid or b) barotropic fluid
(where pressure and density have functional relation i.e., P = P(ρ))
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Vortex on Planetary Atmosphere

Figure: A new, smaller cyclone can be seen at the lower right of this infrared image of Jupiter’s south pole
taken on Nov. 4, 2019, during the 23rd science pass of the planet by NASA’s Juno spacecraft. Credits:
NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM
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Kelvin’s Vorticity Theorem

For incompressible and
inviscid fluid, that satisfies
the following vorticity
equation

∂ω

∂t
= ∇× (v × ω) (22)

then the flux associated
with vorticity is conserved,
i.e.,

D

Dt

∫
S
ω · dS = 0. (23)

EXERCISE 1: Prove the theorem!
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Conservation of Energy - I

Total energy :

E =
1

2
ρv · v + ρε,

where ε is specific internal energy of the system.
Consider first the kinetic energy alone : Take dot product of the
momentum conservation equation with v,

v · Dv

Dt
=

D

Dt

(
1

2
v2

)
= −v · ∇P

ρ
+ v · F (24)

This implies : Rate of change of specific kinetic energy is equal to
the work done by the forces that act upon the fluid i.e., pressure
gradient force and any external force.
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Conservation of Energy - II

Now let us focus on the specific internal energy.
From First Law of thermodynamics we have,

dε = dQ− PdV , (25)

where dQ = H− Λ, i.e, amount of specific heat (H) added to
system minus the amount of cooling (Λ) per unit density.
Using definition of specific volume (V = 1/ρ), we have

Dε

Dt
=

P

ρ2

Dρ

Dt
+

DQ
Dt

= −P

ρ
(∇ · v) +

DQ
Dt

(26)

Therefore,

ρ
D

Dt

(
1

2
v · v + ε

)
= −∇ · (Pv) + ρv · F + ρ

DQ
Dt

(27)
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Gains and Losses in Energy

Let us define the rate of heat gain (or loss) as

−L = ρ
DQ
Dt

(28)

Assume that the heat flux in the system under-consideration is due
to thermal conduction and therefore,

F = −K∇T , (29)

where negative sign implies that heat flows in direction opposite to
temperature gradient and K is coefficient of thermal conductivity.
Thus, the heat loss rate from a volume of fluid is equal to the heat
flux integrated over the bounding surface-∮

F · dS =

∫
∇ · FdV

L = −∇ · (K∇T ) (30)
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Hydrodynamic Equations in Conservative Form

All the Hydrodynamics (HD) equations we have derived can be
written a special form called the conservative form -

∂m

∂t
+∇ · (F (m)) = 0 (31)

where, m is any quantity and F (m) is the flux associated with that
quantity m
For example, say m ≡ ρ then F (m) ≡ ρv implies we have mass
conservation equation -

∂ρ

∂t
+∇ · (ρv) = 0 (32)

EXERCISE 2: Obtain the conservative form for momentum and
energy conservation equation and thereby get the expression of
their respective flux.
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Hydrodynamic Equations in Conservative Form

∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (ρvv + P) = −ρ∇φ

∂(Et + ρφ)

∂t
+∇ · (Et + P + ρφ)v = 0

where, Et = ρε+ 1
2ρv

2 and gravity force per unit density
Fg = −∇φ
Is the above set of equation complete ?? Assume φ→ 0, we have
6 unknowns in general : ρ, P, v = (vx , vy , vz ) and ε, but we only
have 5 equations - Mass conservation (1), energy conservation (1)
and momentum conservation (3).
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Equation of State

The relation that connects the density ρ, pressure P, temperature
T or internal energy ε is called an Equation of state for the gas.
In general, we can express EoS as f (ρ,P,T ) = 0
For example ideal gas law :

PV = nRT → PV − nRT = 0→ f (ρ,V ,T ) = 0 (33)

For calorically perfect gas, ideal gas law can be written as

P = ρ(γ − 1)ε (34)

where γ = Cp/Cv is the ratio of specific heats and the specific
internal energy ε = CvT .
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Application – Hydrostatic Equilibrium

Consider a steady state 1D system along ẑ which is at rest (v = 0). Obtain the
density structure of this system assuming that the dominant mode of heat
transfer is through conduction.

∇P = ρFgrav (35)

∇ · (K∇T ) = 0 (36)

Assuming that the pressure P = P0 at z = 0 and Fgrav = −g ẑ, we have

P = P0 − ρgz (37)

Considering a case of isothermal ideal gas, we have

ρ = ρ0 exp

(
−mpgz

kBT

)
(38)

EXERCISE 3: Plot the variation of density and pressure upto 10 km above in
the atmosphere of Mars. Assuming that radius of Mars is 3.38× 108 cm and
mass is 6.42× 1023 kg and the density on the surface is 0.02 kg/m3 and surface
pressure is 6 mb and mean molecular weight of Martian atmosphere is 43.34
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Application – Hydro-statics : Solar Corona

Solar corona is the hot and tenuous atmosphere just above the Sun
(T ∼ 106 K). Let us say we wish to study this system in steady state and as a
static medium (v = 0) We have in spherical geometry,

dP

dr
= −GM�

r 2

(
mpP

kBT

)
(39)

d

dr

(
Kr 2 dT

dr

)
= 0 (40)

Assume that K ∝ T 5/2 and the boundary conditions as T = T0 at r = r0

(bottom part of corona) and T = 0 as r →∞. This gives pressure as

P = P0 exp

(
7GM�mp

5kBT0r0

{( r0

r

)5/7

− 1

})
(41)

What is the value of P as r →∞ ??

EXERCISE 4: Plot the variation of pressure in terms of P0 upto 1 AU above

for Sun.
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Thermodynamics Fun

Isobaric Process : Pressure of the system does not change i.e,
P = constant

Isothermal Process : Temperature does not change ∆T = 0.
For an ideal gas PV = constant (Boyle’s Law)

Adiabatic Process : Occurs without the transfer of heat
between the system and surroundings ∆Q = 0. For an ideal
gas we have PV γ = constant

Isentropic Process : Thermodynamic process that is both
adiabatic and reversible. Entropy is conserved in this process
i.e., ∆s = 0 or P/ργ = constant

All the above processes can be described as a Polytropic process
that satisfies the basic equation of PV Γ = constant, where Γ is
called the polytropic index. i.e., For an ideal gas : Γ = 0 (Isobaric),
Γ = 1 (Isothermal), Γ = γ (Adiabatic)
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Bonner-Ebert Sphere - I

A hydrostatic equilibrium
for a self gravitating
spherically symmetric
isothermal mass of an
ideal gas. For example :
Bok Globule (Image credit : ESO).

Can you estimate the density profile ρ(r) variation with radius inside the sphere ?

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (42)

Isothermal condition requires,

PV = constant→ P = ρc2
s where c2

s =
kB T

µmH
(43)

Maximum mass supported against self gravity by pressure due to isothermal

MBE ≈ 1.18
c4
s

G 3/2P
1/2
0

; (44)

where P0 = ρ0c2
s is the central pressure
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Bonner-Ebert Sphere - II

Let us define two non-dimensional quantities : x = r/r0 and
ψ = ln(ρ/ρ0), where

r0 =
cs√

4πGρ0
(45)

and ρ0 is the density at the centre of the sphere. Then the above
equation of hydrostatic balance transform to -

1

x2

d

dx

(
x2 dψ

dx

)
= − exp(ψ) (46)

The above second order equation can be written as two coupled
first order equation

dψ

dx
=

y

x2
and

dy

dx
= −x2 exp(ψ) (47)

The above equation is called the Lane-Emden equation and can be
solved numerically using boundary conditions as y = 0 → ψ = 0
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Bernoulli’s Theorem

Let us now assume that the fluid under consideration is NOT
static i.e., v 6= 0, but we are still in steady state. Assume a
conservative body force F = −∇φ
Lets dl represents a line element vector along the streamline of the
fluid. What would be the line element vector along the pathline?
Further, from the definition of streamline what would be the value
of dl× v ?
PROVE : For a steady state flow, the quantity

B =
1

2
v2 +

∫
dP

ρ
+ φ

is constant along a streamline.

Momentum conservation Equation in steady state

Use the vector identity v × (∇× v) = ∇
(

1
2v

2
)
− (v · ∇)v

Line integral of the above equation along a streamline
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Stream Function

Helmholtz Decomposition: A sufficiently smooth (continuously
differentiable sufficient number of times) vector field can be
resolved into the sum of an irrotational (curl-free) vector field and
a solenoidal (divergence-free) vector field

v = −∇φ+∇×Ψ (48)

where, Ψ is called the stream function

For an incompressible flow we can express : v = −∇×Ψ.
Show that Ψ is a constant on streamlines

For a two dimensional irrotational and incompressible flow,
show that ∇φ · ∇Ψ = 0, where φ is the velocity potential.
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From Ideal to Newtonian Fluids

Ideal Fluids

The force acting on the bounding surface element was normal and
in opposite direction to the area vector. No shear force was taken
into account.

In general, Pij = Pδij + Πij

Newtonian Fluids

The force due to shear is accounted for and for these fluids and the
shear stress is directly proportional to velocity shear between the
fluid layers. For example in 2D,

Πxy = −µdvx

dy
,

where, µ is the coefficient of viscosity and the force due to shear
acts in direction opposite to that of the shear.
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Generalising the shear stress

In general, the expression of velocity gradient to obtain shear stress
should be -

∂vi

∂xj
=

1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
︸ ︷︷ ︸

pure shear

+
1

2

(
∂vi

∂xj
−
∂vj

∂xi

)
︸ ︷︷ ︸

rotation

(49)

EXERCISE : Show the the first term of pure shear say Λij = 0 for
case of rigid rotation with angular velocity Ω and velocity given as
v = Ω× x or vi = εikl Ωkxl

For Newtonian fluids, shear stress that depends linearly on velocity
gradient. In general, any second rank tensor that linearly depends
on symmetric combinations of velocity gradients is

Πij = a

(
∂vi

∂xj
+
∂vj

∂xi

)
︸ ︷︷ ︸

pure shear

+bδij ∇ · v︸ ︷︷ ︸
trace of the tensor Λij

(50)
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Navier Stokes Equation - I

Accounting for the fact that the pressure is isotropic and
expressing P = 1

3Pii , we should have the general form of shear
stress to be traceless.

Πij = −µ
(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
∇ · v

)
(51)

One can demonstrate the same expression also from the
microscopic perspective (using kinetic theory). So, the momentum
conservation equation for Newtonian fluids become :

ρ
Dvi

Dt
= ρFi −

∂P

∂xi
+

∂

∂xj

[
µ

(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
∇ · v

)]
(52)
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Navier Stokes Equation - II

Assuming that the coefficient of viscosity is not explicitly depend
on space, we can write -

ρ
Dv

Dt
= ρF−∇P + µ

[
∇2v +

1

3
∇(∇ · v)

]
(53)

Further, neglecting an spatial variation of the compression (i.e.,
∇ · v), we can write the Navier-Stokes Equation as

∂v

∂t
+ (v · ∇)v = F− 1

ρ
∇P + ν∇2v (54)

where, ν = µ/ρ is called the kinematic viscosity.
EXERCISE : What will be the corresponding Vorticity Equation?
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Reynolds Number

In general, the vorticity equation
for incompressible viscous fluid
can be written as :

∂ω′

∂t ′
= ∇′× (v′×ω′) +

1

Re
∇′2ω′

where, x′ = xL, v′ = vV ,
t ′ = t(L/V ), ω′ = ω(V /L) and
the Reynolds number
Re = LV /ν.
Typical values of Reynolds
number in astrophysical flows
∼ 1012 (say for Sun)
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Turbulent Flows
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Accretion Disks : Time Dependent Behaviour I

Several Assumptions :

Consider thin accretion disk (z � r) in cylindrical geometry
(r , φ, z) with the assumption of axi-symmetry (i.e., ∂

∂φ = 0)

Assume vφ dominant velocity component as compared to
small accretion velocity vr and vz = 0. Also any variation of
vr and vφ w.r.t z is neglected.

In general, assume that coefficient of viscosity µ = ρν is not a
constant → True for accretion disk.

Define disk surface density Σ =
∫
ρdz . So, the angular

momentum associated with the ring from r and r + dr will be
given by : Σ(r)r2Ω(r)2πrdr

The velocity shear within the disk
dvφ
dr = Ω + r

dΩ

dr
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Accretion Disks : Time Dependent Behaviour II

Combining from the mass and momentum conservation equation in
cylindrical co-ordinates we can obtain the following evolution
equation for angular momentum :

∂(Σr2Ω)

∂t
+

1

r

∂(Σr3Ωvr )

∂r
= G (55)

where G is the term involving viscosity that we need to find out
OR we define G (r) as viscous torque and then have

G =
1

2πr

∂G

∂r
(56)

and the viscous torque per unit area is obtained from the stress as

G (r) =

∫
rdφ

∫
dzµr2 dΩ

dr
= 2πνΣr3 dΩ

dr
(57)
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Accretion Disks : Time Dependent Behaviour III

Collecting all together we have :

∂(Σr2Ω)

∂t
+

1

r

∂(Σr3Ωvr )

∂r
=

1

r

∂

∂r

(
νΣr3 dΩ

dr

)
(58)

EXERCISE : Show that the above equation for a Keplerian

rotating disk i.e., Ω =
(

GM
r3

)1/2
can be simplified to

∂Σ

∂t
=

3

r

∂

∂r

[√
r
∂(νΣ

√
r)

∂r

]
(59)
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Accretion Disks : Time Dependent Behaviour Solution

For the simple case of Keplerian rotation
and assuming that we have a dirac δ
distribution of matter peaking at r0 at time
t = 0 (i.e.,
Σ(r , t = 0) = m(2πr)−1δ(r − r0)) with
constant kinematic viscosity nu.
The solution is

Σ(x , τ) =
m

πr2
0 τx1/4

exp

(
−

1 + x2

τ

)
I1/4

(
2x

τ

)

where I1/4 is Modified Bessel Function.
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Accretion disks : Steady State

Meaning of steady state ?

Gravity Force assuming a thin disk (z � r) ?

Momentum conservation equation - radial component ?,
vertical component ?

Prove that gradient of pressure term is negligible in
comparison to gravity

Using Σ, get steady state mass and momentum conservation
neglecting pressure gradient.

Show that

νΣ =
Ṁ

3π

[
1−

( r∗
r

)1/2
]

(60)
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Accretion Disk : Energetics

EXERCISE : Derive the energy conservation equation for a
Newtonian fluid and show that viscous dissipation rate per unit
volume within the accretion disk is µr2( dΩ

dr )2.
Therefore, the amount of energy per unit volume radiated away
from the accretion disk is -

−dE

dt
=

∫
µr2

(
dΩ

dr

)2

dz = νΣr2

(
dΩ

dr

)2

(61)

Expressing the above equation in terms of mass accretion rate Ṁ
and integrating over the surface area of the accretion disk we get
the Accretion disk Luminosity

Ldisk =

∫ ∞
r∗

(
−dE

dt

)
2πrdr =

GMṀ

2r∗
(62)
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Perturbing the Hydrodynamic Equations

Assume a homogenous ideal gas with density ρ0 and pressure
P0 and in absence of any external force at rest v0 = 0.

Suppose the pressure of this gas is perturbed i.e.,
P0 + P1(x, t) that gives rise to corresponding perturbation in
density as ρ0 + ρ1(x, t)

The equation for mass conservation now becomes -

∂ρ1

∂t
+∇ · [(ρ0 + ρ1)v1] = 0 (63)

where, v1(x, t) is the velocity perturbation.

Concept of Linear Perturbation Theory : Assume that the
perturbation in density and pressure are much small as
compared to its homogenous values and only the first order
terms of perturbed quantities need to be considered
i.e.,ρ1v1 ≈ 0
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Linear Perturbation in Ideal Fluids

Linearize the mass and momentum conservation equation
assuming an ideal fluid in absence of any external force F = 0.

The perturbed pressure is related to perturbed density in
manner : P1 = a2ρ1, where the quantity a is

a =

√
dP

dρ
(64)

Using the above one can show that the final expression
showing the evolution of density perturbation is :(

∂2

∂t2
− a2∇2

)
ρ1 = 0 (65)

We get a wave equation with wave speed a.
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Wave Equation Fourier Analysis

For linear perturbations → Superposition principle holds true,
so,

ρ1(x, t) = ρ1,0 exp[i(k · x− ωt)] (66)

Substitute in the above wave equation we can get a simple
algebraic equation -

ω2 = a2k2 (67)

The above relation is called the dispersion relation

For the above case we have group and phase velocity
vg = vp = a. Such waves are called non-dispersive waves.
How will this change if we include the external force due to
gravity F 6= 0.

Also the direction of perturbed velocity v1 is same as k
implying that wave waves are longitudinal
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Jeans Instability

Gas is Compressed → Excess pressure tried to smoothen the gas → gives rise to
acoustic waves.
If Gravity is involved → The compressed region will try to pull more material towards
itself → Quite insignificant in propagation of acoustic waves
Jeans Instability → If the self-gravity and enhanced gravitation in the region of
compression overpowers the smoothening caused by pressure in the compressed region.
Perturbation in Gravitation potential Φ0 + Φ1, where the unperturbed potential should
satisfy

∇2Φ0 = 4πGρ0 (68)

and hydro-static balance gives
∇P0 = −ρ0∇Φ0 (69)

PROBLEM?? Uniform infinite gas can not satisfy the above set of equations! Ideally,

one need to solve the above equations and then perturb the system, but, we follow the

linear perturbation approach historically used by Jeans → Jeans Swindle
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Jeans Swindle

Linear perturbation equations for mass, momentum conservation
and the corresponding Poisson equation are :

∂ρ1

∂t
+ ρ0∇ · v1 = 0 (70)

ρ0
∂v1

∂t
+ c2

s∇ρ1 = −ρ0∇Φ1 (71)

∇2Φ1 − 4πGρ1 = 0 (72)

Define all perturbed quantities in form of exp[i(k · x− ωt)] and get
the dispersion relation as

ω2 = c2
s (k2 − k2

J ) (73)

where

k2
J =

4πGρ0

c2
s

(74)
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Jeans Mass, Length and Free fall time

Jeans Length can be defined as λJ = 2π/kJ and Jeans Mass
MJ = (4/3)πρ0λ

3
J .

k > kJ → ω2 > 0 (Density waves) What is the phase and
group velocity?

k < kJ → ω2 < 0 (Jeans Instablity) Results in collapse with
time scale τff

Time scale of Jeans collapse τg = 2π
(
4πGρ0 − k2c2

s

)−1/2

which for the fastest growth k → 0 gives the free fall time

scale. i.e., τff ≈
√

1
Gρ0



Course Modalities Preliminaries Necessary Fluid Equations Applications

Estimating Jeans Quantities

Obtain values of Jeans Mass, Length and free fall time for the
following cases :

Molecular cloud : T = 150K , n0 = 108cm−3 and have typical
mass M = 10− 1000M�

Cosmological scales at decoupling of matter and radiation :
ρ0 = 2M�pc

−3,T = 3000K .

Diffuse HI cloud : T = 50K , n0 = 500cm−3 and have typical
mass M = 1− 100M�
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Role of non-linear terms

Consider the situation when the perturbed quantities are not
very small and it is not possible to neglect the second order
terms in perturbation.

Then v1 · ∇v1 in the momentum equation would be one of the
non-linear term in the momentum conservation equation
:BIGGEST CULPRIT

Consider the momentum conservation equation in 1D

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂P

∂x
(75)

To understand role of the non-linear term just consider the
RHS of above equation to be 0.
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Burger’s Equation and Characteristics

The equation

∂v

∂t
+ v

∂v

∂x
=
∂v

∂t
+

Dx

Dt

∂v

∂x
=

Dv

Dt
= 0 (76)

is called the Burger’s equation. We solve this equation using
method of characteristics
Characteristics are defined as lines on the x − t plane. For the
above equation, we know that these lines will be straight on the
x − t plane as they are the curves that represent

Dx

Dt
= v = constant

Check for solution and more details about the method of
characteristics for Burger’s Equation : http:

//www.clawpack.org/riemann_book/html/Burgers.html

http://www.clawpack.org/riemann_book/html/Burgers.html
http://www.clawpack.org/riemann_book/html/Burgers.html
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Structure of Shock waves

In the rest frame of shock, it will divide the region into upstream
[un-disturbed] and downstream disturbed zones.

AIM: Find the relation between the upstream and downstream
quantities. Basic shock physics : ρ2 > ρ1, P2 > P1, T2 > T1,
v1 > v2
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Rankine-Hugoniot Jump conditions

Under the steady state assumption we have all the flux (mass,
momentum and energy flux) conserved across the shock i.e.,

ρ1v1 = ρ2v2

P1 + ρ1v
2
1 = P2 + ρ2v

2
2

1

2
v2

1 +
γP1

(γ − 1)ρ1
=

1

2
v2

2 +
γP2

(γ − 1)ρ2
(77)

3 equations, 6 unknowns → eliminate P2 and v2 and we get

ρ2

ρ1
=

v1

v2
=

(γ + 1)M2

2 + (γ − 1)M2
= R (78)

where M = v1√
γP1/ρ1

= v1
cs,1

.

In the limit of strong shocks : M� 1, we have ρ2
ρ1

= γ+1
γ−1
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Rankine-Hugoniot Jump conditions

Shock jump conditions with
adibatic index γ and mach
number M

ρ2

ρ1
=

(γ + 1)

(2/M2 + (γ − 1)

v1

v2
=

(γ + 1)

(2/M2 + (γ − 1)

P2

P1
=

2γM2 − (γ − 1)

γ + 1
T2

T1
=

P2

ρ2

ρ1

P1

In the case of strong shock limit
i.e., M� 1

ρ2

ρ1
=

γ + 1

γ − 1
→ 4

v1

v2
=

γ + 1

γ − 1
→ 4

P2

P1
=

2γM2

γ + 1
→ 3

4

ρ1

P1
v2

1

T2

T1
=

2γ(γ − 1)M2

(γ + 1)2
→ 3

16

µmH

kB
v2

1

EXERCISE : What happens for the case of Isothermal gas?
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One dimensional gas flow : Extragalactic Jets

Consider a steady, adiabatic flow with velocity v(x) going through
a pipe whose area in general varies with distance A(x)

ρ(x)v(x)A(x) = constant

1

ρ

dρ

dx
+

1

v

dv

dx
+

1

A

dA

dx
= 0

and the Euler equation is given as

v
dv

dx
= −c2

s

ρ

dρ

dx
(79)

This implies

(1−M2)
1

v

dv

dx
= − 1

A

dA

dx
(80)
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De Laval Nozzle : Twin Exhaust Model
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