Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

PLUTO code Essentials Getting Started

Bhargav Vaidya

Indian Institute of Technology Indore

June 14, 2019

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Installation

PLUTO code Essentials

> Bhargav Vaidva

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples 1 Installation

2 Setting up a Problem in PLUTO

3 Compiling and Running

- **4** Visualization of Data
- 5 Features of PLUTO code
- 6 Some Examples

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Basic Requisites

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Code Compilation

- Serial version C compiler e.g. gcc
- Parallel Version MPICH library v2.0+ e.g., mpicc, mpirun, mpiexec etc.
- Python v2.7+, curses library (optional)
- (only for AMR) C++ compilers, Chombo Library & HDF5

Data Analysis and Visualization

- Python v2.7+ or v3.5+ OR Gnuplot OR IDL
- Recommended for 3D visualization and volume rendering LLNL VisiT OR Kitware Paraview

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Downloading from the Web-page

Code Webpage : http://plutocode.ph.unito.it Unpacking and Installing the code

 Untar the .TAR.GZ file → tar -xvzf pluto-xx.tar.gz where xx is the PLUTO version → will create a folder named PLUTO.

Latest version is 4.3 (June 2018)

 Define a PLUTO_DIR in your shell → bashrc: export PLUTO_DIR =< Path to the PLUTO directory > tcsh: setenv PLUTO_DIR < Path to the PLUTO directory >

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Comprehensive Documentation

The unique selling point of the code is the exhaustive documentation.

- The pdf version can be found in \$PLUTO_DIR/Doc/userguide.pdf
- Additional there is a Doxygen documentation for all the test problems and source codes.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Problem Description

• What is the underlying physics ?

 \rightarrow With or without magnetic fields ? Is the flow relativistic ?

- In what geometry do you wish to solve the equations ?
 → What are the dimensions? What are the grid extends for each of these dimensions?
- Does the problem require to add source terms?
 - \rightarrow What is the functional form of source term ? Which conservation equations are affected?
- What physical conditions would be used to prescribe boundary conditions?

 \rightarrow Does the solution requires userdef boundary conditions? How to minimize the effects of boundary where not required?

• What is the time-scale upto which the simulation should run?

An Example!

Installation

PLUTO code Essentials

> Bhargav Vaidva

Setting up a Problem in PLUTO

- Compiling and Running
- Visualization of Data
- Features of PLUTO code
- Some Examples

Interaction of solar wind with Earth's Magneto-sphere.

- What is the underlying physics ? Non-relativistic with magnetic fields
- In what geometry do you wish to solve the equations ? 3D Cartesian $\rightarrow (x, y, z) = (20R_{\rm E}, 20R_{\rm E}, 100R_{\rm E})$, Earth is centered at (0,0,0)
- Does the problem require to add source terms? Yes \rightarrow Gravity to support Earth's magneto-sphere.
- What physical conditions would be used to prescribe boundary conditions? Injection of solar wind on left z axis and free flow in all other possible directions.
- What is the time-scale upto which the simulation should run? Till steady state is achieved.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Setting up using Python

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In order to input the problem definitions to the code a python interface is created.

python \$PLUTO_DIR/setup.py <options >

```
>> Python setup (May 2018) <<
```

Working dir: /Users/Bhargav/PLUTO_Dev/PLUTO-4.3 PLUTO dir : /Users/Bhargav/PLUTO_Dev/pluto

Setup problem Change makefile Auto-update Save Setup Quit

Bhargav Vaidya

Setting up using Python

Installation Setting up a	Options	Remarks/Modules
Problem in PLUTO Compiling and Running		Default option
Visualization of Data Features of	with-fd	Using the Finite Difference Scheme (Only non-relativistic physics)
PLUTO code Some Examples	with-sb	Shearing Box
	with-fargo	FARGO module for Acceretion Disk
	with-chombo	The chombo module for AMR runs
	with-particles	Invoking the Particle module

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualizatior of Data

Features of PLUTO code

Some Examples

ødefine PHYSICS ødefine DDHRSI ødefine CDAPOHU ødefine GCAPHET ødefine BCDX-FD

Example : Magnetized Non-relativistic Blast wave in 2D

- Common definition block
- Physics dependent block
- User-defined (labeled) parameters
- User-defined constants [more for expert users]

#define		MHD
#define	DIMENSIONS	2
	COMPONENTS	2
#define		CARTESIAN
	BODY_FORCE	ND
#define	FORCED_TURB	ND
#define	COOLING	NO
	RECONSTRUCTION	LINEAR
	TIME_STEPPING	RK2
		NO
#define		0
#define	USER_DEF_PARAMETERS	7
1	sics dependent declarations	
/* pn	sics dependent declarations	*/
#define	EOS	IDEAL
	ENTROPY_SWITCH	ND
#define	DIVB_CONTROL	CONSTRAINED_TRANSPORT
	BACKGROUND_FIELD	ND
#define	AMBIPOLAR_DIFFUSION	ND
#define	RESISTIVITY	ND
#define		ND
#define	THERMAL_CONDUCTION	ND
	VISCOSITY	NO
#define	ROTATING_FRAME	NO
/* 1184	er-defined parameters (labels) -	*/
/+ uu	i derined parameters (insers)	
#define		0
#define	P_OUT	1
#define	BMAG	2
#define		3
#define		4
#define	RADIUS	5
#define	GAMMA	6
/* [Beg]	user-defined constants (do not	change this line) */
		115.0
	CHAR_LIMITING	YES
#define		VANLEER_LIM
		ARITHMETIC
		YES
#detine	ASSIGN_VECTOR_POTENTIAL	YES

Input Files : **definitions.h**

/* [End] user-defined constants (do not change this line) */

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Input Files : pluto.ini - Part I

[Grid]

X1-grid	1	-0.5	200	u	0.5
X2-grid	1	-0.5	200	u	0.5
X3-grid	1	-0.5	1	u	0.5

[Chombo Refinement]

Levels Ref_ratio Regrid_interval Refine_thresh Tag_buffer_size Block_factor Max_grid_size	0.3 3 4 32
Fill_ratio [Time]	0.75
tstop first_dt [Solver]	0.4 1.1 0.01 1.e-6
[Boundary]	
X1-end or X2-beg or X2-end or X3-beg or	utflow utflow utflow utflow utflow utflow

Grid block

- Chombo block
- Time Block
- Solver Block
- Boundary Block

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Input Files : pluto.ini - Part II

Static Grid Output BlockChombo HDF5 output

Block

Parameters Block

[Static Grid Output]

userv	ar 0		
dbl	1.e3	-1	single_file
flt	-1.0	-1	single_file
vtk	-1.0	-1	single_file
tab	-1.0	-1	
ppm	-1.0	-1	
png	-1.0	-1	
log	1		
analy	sis -1.0	-1	
Plot_	point_inte interval meters]	rval	-1.0 0 1.0 0
P_IN P_OUT BMAG THETA PHI			1.e3 0.1 28.2094791773878 90.0 90.0
RADIU	s		0.1
GAMMA			1.4

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Init block : Inputs -

- v[NVAR] → an array of primitive variables
- x1, x2, x3 → Point co-ordinate for the chosen geometry.
- Used to set the initial conditions in the domain point by point.

Input Files : init.c

```
void Init (double *us, double x1, double x2, double x3)
/*
double r, theta, phi, B0;
 g_gamma = g_inputParam[GAMMA];
 r = D EXPAND(x1*x1, + x2*x2, + x3*x3);
 r = sart(r):
 us[RH0] = 1.0;
 us[VX1] = 0.0:
 us[VX2] = 0.0;
 us[VX3] = 0.0:
 us[PRS] = g_inputParam[P_OUT];
 if (r <= g inputParam[RADIUS]) us[PRS] = g inputParam[P IN];
 theta = g inputParam[THETA]*CONST PI/180.0;
      =
        g_inputParam[PHI]*CONST_PI/180.0;
  nhi
      = g inputParam[BMAG];
 RØ
 us[BX1] = B0*sin(theta)*cos(phi):
 us[BX2] = B0*sin(theta)*sin(phi);
 us[BX3] = B0*cos(theta):
 #if GEOMETRY == CARTESIAN
  us[AX1] = 0.0:
  us[AX2] = us[BX3]*x1;
  us[AX3] = -us[BX2]*x1 + us[BX1]*x2;
 #elif GEOMETRY == CYLINDRICAL
  us[AX1] = us[AX2] = 0.0;
  us[AX3] = 0.5*us[BX2]*x1:
 #endif
 #if BACKGROUND FIELD == YES
  us[BX1] = us[BX2] = us[BX3] =
  us[AX1] = us[AX2] = us[AX3] = 0.0
 #endif
```

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Makefile & Compilation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A **makefile** is created based on the architecture/compiler of your choice. Some standard combinations are available in the option of *Change Makefile* option of the setup.

>> Change makefile <<

Darwin.gcc.defs

Darwin.mpicc.defs Linux.gcc.defs Linux.mpicc.defs MARCONI.mpiicc.defs Template.defs debug.defs profile.defs

Finally, compile the code using the - **make** command in the terminal to get the executable PLUTO!

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Running the Code

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Check with Idd if all libraries are linked. Serial and Parallel run commands.

- If compiled with ${\bf gcc}$ the command to run is (Serial mode)
 - : ./pluto
- If compiled with Parallel compilers liked **mpicc**, then the command to run is : **mpiexec -n 4 ./pluto**

At the end of the run, the code writes the data in prescribed format along with **.out** and **.log** files.

The **grid.out** contains information about the grid to be read for visualization.

The **.out** files corresponding to each data-set has information on variables stored at different time.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

- The log files keep track of the progress of the simulations
- For parallel job, each processor writes it own log file.
- Frequency as to when the log output should written is governed by "log" input in pluto.ini

Output Files : log files

> Memory allocation

	> Memory allocation
	> Assigning initial conditions (Startup)
	> Normalization Units:
	- Normatization onition
	[Density]: 1.673e-24 (gr/cm^3), 1.000e+00 (1/cm^3)
	[Pressure]: 1.673e-14 (dyne/cm^2)
	[Velocity]: 1.000e+05 (cm/s)
	[Length]: 1.496e+13 (cm)
	[Temperature]: 1.203e+02 X (p/rho+mu) (K)
	[Temperature]: 1.203e+02 X (p/rno+mu) (K)
	[Time]: 1.496e+08 (sec), 4.744e+00 (yrs)
	[Mag Field]: 4.585e-07 (Gauss)
	> Number of processors: 1
	> Proc size: 200 X 200
	> Writing file #0 (dbl) to disk
	> Starting computation
	step:0; t = 0.0000e+00; dt = 1.0000e-06; 0.0 %
	[Mach = 0.131337]
	step:1; t = 1.0000e-06; dt = 1.1000e-06; 0.0 %
	[Mach = 0.268750]
	step:2; t = 2.1000e-06; dt = 1.2100e-06; 0.0 %
	[Mach = 0.400550]
	step:3; t = 3.3100e-06; dt = 1.3310e-06; 0.0 %
	[Mach = 0.517421]
	step:4; t = 4.6410e-06; dt = 1.4641e-06; 0.0 %
	[Mach = 0.614759]
	step:5; t = 6.1051e-06; dt = 1.6105e-06; 0.1 %
	[Mach = 0.692004]
k	
	step:320; t = 9.7649e-03; dt = 3.2638e-05; 97.6 %
	[Mach = 11,409206]
	step:321: t = 9.7975e-03: dt = 3.2629e-05: 98.0 %
	[Mach = 11.374097]
	step:322; t = 9.8302e-03; dt = 3.2619e-05; 98.3 %
	[Mach = 11.333627]
	step:323; t = 9.8628e-03; dt = 3.2608e-05; 98.6 %
J	[Mach = 11,283199]
	step:324: t = 9.8954e-03: dt = 3.2599e-05: 99.0 %
	[Mach = 11 351911]
	[Mach = 11.251811]
	step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 %
	<pre>step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501]</pre>
	<pre>step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501]</pre>
	step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:326; t = 9.9606e-03; dt = 3.2583e-05; 99.6 %
	<pre>step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:326; t = 9.9606e-03; dt = 3.2583e-05; 99.6 % [Mach = 11.228911]</pre>
	step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:326; t = 9.9606e-03; dt = 3.2583e-05; 99.6 % [Mach = 11.228911] step:327; t = 9.9932e-03; dt = 6.8371e-06; 99.9 %
	<pre>step:225; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:226; t = 9.9606e-03; dt = 3.2583e-05; 99.6 % [Mach = 11.22811] step:227; t = 9.9932e-03; dt = 6.6371e-06; 99.9 % [Mach = 11.21180]</pre>
	step:325; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:326; t = 9.9606e-03; dt = 3.2583e-05; 99.6 % [Mach = 11.228911] step:327; t = 9.9932e-03; dt = 6.8371e-06; 99.9 %
	<pre>step:225; t = 9.9280e-03; dt = 3.2591e-05; 99.3 % [Mach = 11.241501] step:226; t = 9.9606e-03; dt = 3.2583e-05; 99.6 % [Mach = 11.22811] step:227; t = 9.9932e-03; dt = 6.6371e-06; 99.9 % [Mach = 11.21180]</pre>
	step:35; t = 9.2280-83; dt = 3.2591-85; 99.3 % (Mach = 11.241581) step:326; t = 9.0666-83; dt = 3.2532-85; 99.6 % (Mach = 11.22891) step:327; t = 9.9932-83; dt = 6.3371e-86; 99.9 % (Mach = 11.21180) > Writing file #1 (dbl) to disk
	step:325; t = 9.4280-e31; dt = 3.2591-e35; 99.3 % Mach = 11.241591 step:326; t = 9.4060-e31; dt = 3.2383-e35; 99.6 % Mach = 11.229911 step:327; t = 9.4932-e31; dt = 6.8371e-d6; 99.9 % writing file = 11.21180 > Writing file = 11.21180 > Total allocate memory 12.87 Mb
	step:125; t = 9.4280e-83; dt = 3.4591e-85; 99.3 % Much = 11.241581 step:125; t = 9.4066-831; dt = 3.2533e-85; 99.6 % step:127; t = 9.9032e-83; dt = 6.5371e-86; 99.9 % Much = 11.21180 Writing file al (dbl) to disk > Total allocated meany 12.67 %b > Elapsed time 06.05% means
	step:325; t = 9.4280-e31; dt = 3.2591-e35; 99.3 % [Mach = 11.241591] step:326; t = 9.4060-e31; dt = 3.2383-e35; 99.6 % [Mach = 11.228911] step:327; t = 9.4932-e31; dt = 6.8371e-66; 99.9 % [Mach = 11.228911] > writing fite 41 (db1) to disk > Total allocate memory 12.87 Mb > Elapsed time 06:0%:0%:18s > Average time/step 5.40e-42 (sec)
	step:125; t = 9.4280e-83; dt = 3.4591e-85; 99.3 % Much = 11.241581 step:125; t = 9.4066-831; dt = 3.2533e-85; 99.6 % step:127; t = 9.9032e-83; dt = 6.5371e-86; 99.9 % Much = 11.21180 Writing file al (dbl) to disk > Total allocated meany 12.67 %b > Elapsed time 06.05% means
	step:325; t = 9.4280-e31; dt = 3.2591-e35; 99.3 % [Mach = 11.241591] step:326; t = 9.4060-e31; dt = 3.2383-e35; 99.6 % [Mach = 11.228911] step:327; t = 9.4932-e31; dt = 6.8371e-66; 99.9 % [Mach = 11.228911] > writing fite 41 (db1) to disk > Total allocate memory 12.87 Mb > Elapsed time 06:0%:0%:18s > Average time/step 5.40e-42 (sec)

・ロト ・ 雪 ト ・ ヨ ト

-

Bhargav Vaidva

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Command : ./pluto <*suffix options*> Function Options Restarts from data nnnn.dbl file -restart n Runs the code for n steps. -maxsteps n -no-write Does not write any data files -xres Nx Overwrites the resolution set in pluto.ini with Nx along X and scales accordingly in other direction

Suffix Properties

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ●

Data formats

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Installation

PLUTO code Essentials

> Bhargav Vaidva

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples The code outputs in various data formats either in the *single file* format or *multiple file* format. The different usually used formats are -

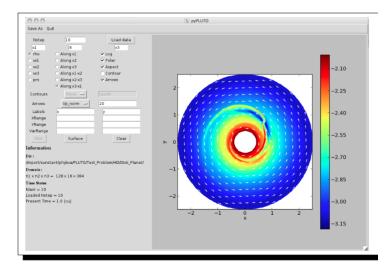
- .dbl Native binary in double format. Useful for restarting the code.
- .flt Native binary float format
- .vtk Visualization Tool kit format. (Vislt visualization)
- .hdf5 Obtained for AMR run (Vislt visualization)
- .tab, .ppm Not very relevant for general runs.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running


Visualization of Data

Features of PLUTO code

Some Examples

Visualization using Python Valid for all of the above mentioned data formats – Does not

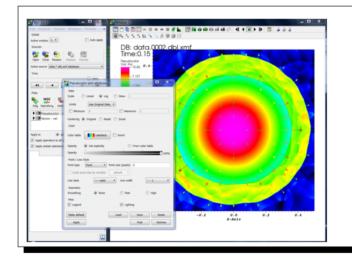
support 3D visualization.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running


Visualization of Data

Features of PLUTO code

Some Examples

Valid for the **.vtk** and **.hdf5** data file formats – Very useful for 3D visualization.

Visualization using Visit

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Various PHYSICS module

- Hydrodynamics (HD)
- Magneto-Hydrodynamics (MHD)
- (Special) Relativistic HD
- (Special) Relativistic MHD
- Particles a) Lagrangian, b) MHD-PIC, c) Dust.

The $\nabla \cdot \vec{B} = 0$ constraint is governed by i) Powell's Eight wave method, ii) Divergence Cleaning approach and iii) Constraint Transport.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Source Terms, Non-Ideal Physics

• Body Force : Gravity in both Vector and Potential format

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

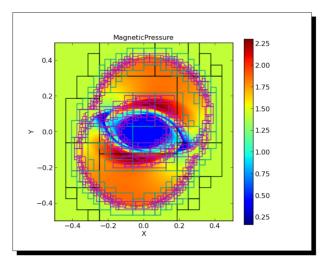
- Optically Thin Radiation Cooling.
- Forced Turbulence with appropriate stirring
- Ambipolar Diffusion
- Hall Effect
- Magnetic Resistivity
- Thermal Conduction
- Viscosity
- Option for working the Rotating Frame.
- Options for various EoS.

Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running


Visualization of Data

Features of PLUTO code

Some Examples

Adaptive Mesh Refinement

PLUTO code has fully developed AMR capability supporting all geometry and dimensions using the CHOMBO library.

> Bhargav Vaidya

Installation

Setting up a Problem in PLUTO

Compiling and Running

Visualization of Data

Features of PLUTO code

Some Examples

Hands-on Session with PLUTO

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

I will discuss the following -

- HD Sod Shock tube problem
- MHD Blast Wave problem
- You will have to run the following
 - Rayleigh-Taylor Instability
 - Kelvin-Helmholtz Instability
 - Study of Shock-cloud collision.