Table of contents

ABSTRACT 1
ACKNOWLEDGEMENTScccceeveennenns 2
TABLE OF CONTENTS .uuiiiiiiniininneninissnissessssisssisssssssssssssosssosssssssssssossssssssssssossssss 3
CHAPTER 1. INTRODUCTION 6
1.1 REAL-TIME KERNEL FUNCTIONSoiiiiiiiieiieniie ettt 7
1.2 REAL-TIME KERNEL ARCHITECTURE ..ceeuetiiuteiieeeeeeeeeeee e eeeeeeeeeeeeeseeeneeeeneeens 8
1.2.1 MONOLIthIC KEFNELSccovveeieeiiiiieeie et e 8
1.2.2 Object-based Kernels............ccoouuvvieiiieeiiieiiiriesieessire e serseesvee e s vaeesinee e 9

1.3 REAL-TIME KERNEL OPERATION.....ceitiiiieiieeieeeeee et et e e seeee e eee e e eneesneeenes 10
1.3.1 Tick-driven Kermnels...............occoooeeueeeeeeieeeeeeeeeeeee e 10
1.3.2 Event-driven Kernelscc.occoueooeeeeeeieeeeeeeeeeeeeeeeeeee e 10

1.4 SURVEY AND ANALYSIS OF EXISTING KERNELS.....ccootiiiiaieeeeeeeeeee e 11
1.4.1 Real-time kernel from Danfoss A/S..........ccccoevoioioiiiiiiiaiieieeieeeeeee 11
1.4 1.1 DAEA SIPUCTUFES ... 12
1.4.2 OSEK/VDX KEFNEL. ..., 13
1.4.3 ASLFisk KEFNEL.........occocviieiieiiie ettt 14
1.4.4 HARTEX KEFREL........occcvieieiieiiieeeccs ettt et san et 16

1.5 REQUIREMENTS FOR AND FEATURES OF THE KERNEL BEING DEVELOPED............ 18
CHAPTER 2. KERNEL ORGANIZATION....... 21
2.1 SUBSYSTEMS — THEIR FUNCTIONSceitiemiieniieeiieeieeneententeseneessesseesseessaesenesaneennes 21
2.1 1 TASK MANGZEFoccvveeeiee ettt v e e v e e e e nave e 22
2.1.2 Integrated Event Managerccccccocueeiuiiiireeiiiisesieesireesissaesies e sssae e 22
2.1.3 ReSOUTCE MANGZETc..oeecevveeiiieeiiee et s et e e etve et a e stvee e vaesaea e 23
2,14 SOFIWATE BUSooovvve ettt sttt et e e saae e araeea 23
2.1.5 Hardware Adaptation Layer (HAL)..........c.ccccoovvviieiiiiiiii e 23

2.2 SUBSYSTEM INTERACTIONS FOR KERNEL OPERATION......ccccvveeruveerreesinreesnneennneennns 24
CHAPTER 3. TASK MANAGEMENTcccccvninnrennseinsinsenssensssssssssssessassssssssssssess 26
3.1 TYPES OF BASIC TASKS....tietieutiiteiteieeiieeneeeenieetee st ee e seesnesiee st et e seeesne e ennennees 26
3oL L STMPLE LASKS.....vveieve ettt 26
3.1.2 COMPOUNA TASKS ...t 26

3.2 TASK MANAGEMENTcutiiiiiiiienitenteste sttt ettt st sne e enees 27
3.2.1 Basic task’s state transition dia@ram.................cc.cccoceeeeeievieciesiaiieeeens 27
3.2.2 Task management data SIUCHUTESc..cccoeeieiieiieee e 28

3.4 BASIC TASK SCHEDULING WITHOUT RESOURCE MANAGEMENTccccevuiemeenniennee 30
3.4.1 Task manager organization and SIAVIUPcccocoeeeieieieiieieeeeeeen 30
3.4.2 Task management private functions and primitivesccccevvuvevveerirvenns 34

3.5 INTEGRATED TASK AND RESOURCE MANAGEMENT — SBPC PROTOCOL.................. 36
3.5.1 Stack-Based Priority Ceiling (SBPC) protocolc....coccovvieviiviiieeninnaens 37
3.5.2 Integrated task and resource management — implementation....................... 38
3.5.3 Private functions and Primitivescc.cceveevieeisiueesiieeesireesiseesivessssessnsaeens 38

3.6 CASE STUDY .niiiiiiiieeteeeee ettt sttt sttt s nn e enees 44
Gourinath Banda 3

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

CHAPTER 4. TASK INTERACTION 47

4.1 TASK SYNCHRONIZATIONouviuiiiimiiniiesieecesces e ss e se s 47
4.1.1 Event notification through Boolean vector semaphores — primitives............ 49
4.1.2 Synchronization PriMitiVescceeviveeiciseeiiiseeiieeesiseesseessneesreeesiseessee e 51
4.1.3 lllustration of usage Of Primitivescc.cccooeiieiieoiiieiee et 52
4.1.4 Different patterns of task Synchronizationsc.ccccoeceeeeeeeeieecieecee e, 53
4.1.4 Different patterns of task Synchronizationsc.cccoeceeeeeeeeieeciceeee e, 54

4.2 TASK COMMUNICATION VIA CONTENT-ORIENTED MESSAGE ADDRESSING........ 56
4.2.1 Content-oriented message addreSSingc.cccooecieeeieneeiiienieiieieeeenn. 56
4.2.2 Communication primitives and private functions..............ccccoeeeeeeeeceenncenn. 59
4.2.3 lllustration of usage of communication primitives to get content oriented
TNESSAZGE AAAVESSITZ ...ttt 63
4.2.4 Merits of this communication in Kernelccc.cccoeivveeiciiiesieeiiineenineens 66

CHAPTER S. COMPOUND TASKS AND SECONDARY-LEVEL

SCHEDULING ALGORITHMS .68
5.1 COMPOUND TASK AND SUBTASKS ...ccuvteuuieirenieniienteentenieeetesstesaesneeneesneenneesanens 68
5.2 SUBTASK SCHEDULING ALGORITHMSeteruteruieriienutensienieenetenseesmeeeneeeneesneesneenanens 69

5.2 L FIFQ SUPLE..ucccuveiiiii ettt ettt e e s aa e stva e saae e saraeen 69
5.2.2 Static Cyclic Scheduling using the Boolean Vector Semaphores 70
5.2.3 Execution of a arbitrary sequence of SUDIASKScccccovvevvviieviieniiieeiineens 77
CONFOL_MEMOTY LADLE.........occoveeiiiecie et 83

CHAPTER 6. EVENT MANAGEMENT 84
6.1 EVENT DESCRIPTOReeiutiiiieiteniie it eieeitcrtceeeesate st saae et et e s s ene e e esneesanens 85
6.2 TIME AND EVENT MANAGEMENT IN INTEGRATED EVENT MANAGEMENT................ 87

0.2.1 Basic EVENnt ProCeSSING..........ccvviveiveeiieeiiiieesirseeieeesiiaeesivaesiaee e e s ssaeennee s 87
6.2.2 Essential Event Management..............ccccovuverevriesiveeiiseesissessiseesinsessssessssnessnns 88
6.2.3 Event Descriptor Table (event_descriptor table)ccoeeveiiviiiveninnanns 89
6.3 IMPLEMENTING INTEGRATED TIME AND EXTERNAL EVENT MANAGEMENT 89
6.3.1 Basic event processing implementation....................cccoccoeeeeereecaneeneeeene. 90
6.3.2 Integrated event management Primitivesccc.cceeeeeeeeeeeeeeeceeeeeeeeeeeen, 91
6.4 EVENTS OF ‘ONE_OFF’ TYPE: THEIR SIGNIFICANCEccoritiiiiianieeniiee e eeieeenaee 95

CHAPTER 7. CONCLUSION .97

CHAPTER 8. REFERENCESccovinneicrunssensasssasosancses 98

APPENDIX 99
L. MAIN FUNCTION ...ttt ettt ettt cettesate st st et et e st st esbaesas e st e ebaesaaesaneennee 99
2. TASKLC ettt ettt st st et et st et et ettt ettt e bbb st e e b e e saaesareeas 101
B TASKH ettt ettt ettt et s et a e st st st et ettt et et 103
4L EVENTS.C ittt ettt sttt e st 104
S EVENTS Hu ittt sttt 105

Gourinath Banda
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

OIS 016 206 2 & 106

W) =Y VN o (0128 S O 107
I S5 VN 5 (6] 23 230 G (R 108
Q. MESSAGE.Caueoeeeeeeeeeeee e 109
LY YN S 110
| VN QY VN 7N € 2 L R 111
| B VNS Y N N 23 113
13. RESOURCEMANAGER.C......ooiuitveeeieeeeeeeeitreeeeeeeseenesaseeeeeesesensssssseneesesssssssssnneeees 114
14. RESOURCEMANAGER.H.......coiuuvteeeiieeeieeiiitreeeeeeeeeeesaseeeeeesesessssssssneeeessssssnssnneeeess 115
15. RESOURCEMANAGER Huueieeuveeiiuieeeieeeeuieesineeesseesssseesseessseesssssessssessssessssssnnsennns 116
16. INTEGRATEDEVENTIMANAGER.C.....ccoooiiumtreeieeeeeeeeiinieeeeeeeeeeesessnnneeeessesessssnneeeess 117
17. INTEGRATEDEVENTIMANAGER.Hcccoiiimirieiieeeieieenieeeeeeeeeeeeesaeneeeeesseesnsssnneeeess 119
18. INTEGRATEDEVENTMANAGER .H ...ooiieuiieiirieereesieeesneeesseeesseeesneessseeessnesnnnennns 120
19. SYNCHRONIZATIONBUS.C ...ttt ee s e aene e 121
20. SYNCHRONIZATIONBUS. H.....tiiiiiiiiiii e e e ee s 122
21. SYNCHRONIZATIONBUS H..ueiiiiiiiiiieeiie ettt et ettt e s 123
22. COMMUNICATIONBUS.C...oooiiiiiiieieee e 124
23. COMMUNICATIONBUS.H ..cooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee et 126
24. COMMUNICATIONBUS .H ..iiiiiiiiiieiiteete ettt et et et e s 127

Gourinath Banda 5

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 1. Introduction

Embedded systems are increasingly being used in several areas, which include military
applications, aerospace systems, automotive systems, industrial automation, medical
instrumentation measurement instrumentation etc [1]. Further most of such systems use
small microcontrollers. Depending on the context of application where the embedded

system is deployed the speed of response and safety requirements vary.

Embedded systems are also known as real time systems since they respond to an input
or event and produce the result within a guaranteed time interval (deadline). This time
interval can be from few milliseconds or more. Real time systems are further classified
as hard real time systems and soft real time systems, based on the strictness to the time
period. A hard real time system should complete the specified task within the stipulated
time frame. A failure to do so is treated as the failure of the system. Hence hard real-
time systems are deterministic. A soft real time system is not very strict. Not completing
a task within the time frame is pardonable, provided it will not affect the overall system
performance. The consequences for failing to meet timing limits range from mere
inconvenience, to the loss of human life. The term real-time has evolved to refer to any

application in which a computer is used to control a process.

Just like the open-end computer systems (full fledged systems like personal computer)
where there is a separate operating system that handles underlying hardware and
provides the wanted support on which the application software resides and works, the
embedded systems also have a different operating system called Real-time operating
system (RTOS) so that the application and application software developers need not
concentrate much on the issues other than application. However it is possible to develop

a system without RTOS, which will have no much control over response and priorities.

A real time system may be doing some simple task to complex tasks with many decision
loops and interrupts. Often in real time applications the entire job to be done is split into
several portions called tasks. Real Time Operating Systems (RTOS) are used to
schedule tasks in complex systems, so that the needed end functionality of the system is

derived very efficiently.

Gourinath Banda 6

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

An RTOS helps to schedule and execute tasks based on priority in a predictable
manner. So RTOS has to be multitasking and preemptable. It also should have
predictable task synchronization mechanisms. Therefore usage of RTOS will enable you
to break the complex system into smaller tasks without worrying about the inter task
timing problems. Depending on the complexity and requirements of the application the

services to be provided by RTOS vary.

1.1 Real-time Kernel Functions

All the RTOSs have a core called Real-Time Kernel, which provides an operational
environment for application tasks via a number of services. It is the Kernel that decides
which thread (task) is run at each point in time. It is the kernel on which the rest of the
OS is built. The basic system services provided by Kernel are-

e External event management

e Timing event management

e Task management

e Resource management

e Task synchronization

e Task communication
In addition to these basic functions it could provide support for additional system
functions, such as-

¢ Dynamic memory management

e Memory protection

e Peripheral device drivers

e Basic user interface

e Network communication
The previously said functions are a must for any RTOS and are implemented by the
Kernel. Small-embedded systems, which are built around a single microcontroller, have
very limited resources in all respects, so we cannot afford for a RTOS whose demands
exceed the chip resources. In such cases a Real-time Kernel implementing the basic
functions could substitute a RTOS. In the current project such a Real-time Kernel has
been designed and implemented for AVR microcontroller. This kernel is named as

HARTEX|, pronounced as hartex micro.

Gourinath Banda
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.2 Real-time Kernel Architecture

In developing kernels one can follow different architectures deriving the basic functions
needed. There are two popular architectures [1] and hence two categories of kernels:

e Monolithic Kernels

e Object-based Kernels
Kernel routines irrespective of the architecture can be broadly subdivided into two
classes: internal functions and public system functions (system calls), which may be
invoked from within application tasks. These can be structured into a number of layers,
e.g. service layer, process management layer, process list management layer etc., and
machine-dependent layer. Such a layering provides for kernel portability across
different chips, since it is only the lowest layer that is hardware dependent. This last

layer is called the hardware adaptation layer.

1.2.1 Monolithic Kernels

This is a conventional type of architecture where in the Real-time Kernel is built from
specific routines, which share common data structures — tables, queues etc. The Kernel
interacts with user-supplied tasks and interrupt service routines (ISRs). The specific
routines themselves give the services said earlier. A real-time system implemented by

such kernel can be seen in the Fig.1.

External interrupts

1 |

lSR[ISR2 IS];{X
REAL-TIME KERNEL “ ZTick
Task1 TaSk2 Taskn

Figurel. Real-time system with a Monolithic Kernel

Gourinath Banda 3

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.2.2 Object-based Kernels

This architecture emphasizes encapsulation of data and the corresponding system
functions into subsystems (objects), whereby subsystems functions are made accessible
only through appropriate object interfaces. This division into subsystem is done such
that each subsystem contributes towards one service mentioned earlier. Object
interfaces consist of internal calls that are invoked by other kernel objects and public
(system) calls that may be invoked by application tasks. A real-time system with

Object-based Kernel is shown in Fig.2.

External interrupts

ﬁ Ll H' Ll

EVENT MANAGER TIME MANAGER
TASK MANAGER
TaSkl TaSk2 TaSkn

SOFTWARE BUS (SYNCHRONIZATION AND
COMMUNICATION)

Figure 2 . Real-time system with Object-based Kernel made of various subsystems.

The RTOS consists of a real-time kernel at its core and number of system processes,
which provide an extended operational environment for the user processes. The
extended operational environment includes support for network communication and
associated protocol stacks, file system, graphic user interface, etc. The architecture of
RTOS followed a similar trend featuring two types of architectures: Monolithic RTOS
and Microkernel Architecture. But the details of these architectures are of no

significance in the current project.

Gourinath Banda 9

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.3 Real-time Kernel Operation

The kernel has to be called into operation by activating it explicitly. There are two types
of kernels with regard to the mechanism of kernel activation:
e Tick-driven Kernels

e Event-driven Kernels

1.3.1 Tick-driven Kernels

These kernels are activated by periodically arriving tick (timer) interrupts resulting in
synchronous kernel operation. Further it is possible to adopt two strategies with regard
to external event processing:

- External interrupts enabled

- All interrupts except the tick interrupt are disabled
Obviously in the former case the external interrupts are acknowledged and according to
their ISR code they may generate requests for the execution of application tasks but
these are recognized by the task manager only when the kernel is activated on the next
nearest tick instant. This results in a variation of task release times, which is known as

task release jitter.

1.3.2 Event-driven Kernels

These kernels are activated by sporadically arriving external interrupts resulting in
asynchronous kernel operation. Further it is possible to adopt two strategies with regard
to generation of timing events:
- without additional timing facilities i.e., timing events are generated
exclusively by hardware timers

- with additional timing facilities implemented in software

In practice real-time kernels often use both types of activation mechanisms described

above resulting in combined tick-driven and event-driven operation.

Gourinath Banda 10

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.4 Survey and analysis of existing Kernels

The basic duty of kernel is to do task switching following the defined scheduling policy;
and the efficiency in doing this duty is defined by how much overhead is placed in

terms of time taken, memory taken etc.

In all real-time application developments whether small or complex it is always
advantageous to use a kernel. The reason is using a kernel makes it easier:

to design the structure of application software (firmware)

to service and maintain the system

in further development of the system

Owing to these reasons many software developer groups have developed several kernels
following their own requirements. Several of such kernels are discussed in the following
sections starting with the classical or conventional type, then recent kernel in use for
automotive controls systems and finally discussing a kernel with all latest state-of-the-

art in real-time field put into action.

1.4.1 Real-time kernel from Danfoss A/S

This kernel is developed by Danfoss A/S for their real-time systems to be deployed on
H8/3002 microcontrollers with 8KB RAM [2]. The requirements from this kernel were:

1. The kernel has to run on a H8/3002 microcontroller with 8KB RAM in the large
memory model using development tools from IAR (C-compiler v3.31B,
Assembler v 2.11J, Linker v4.48D, Librarian v3.26J).

2. The kernel must support both pre-emptive and non pre-emptive scheduling.

3. It must be possible to create tasks with different stack size (dynamically
allocated).

4. A task must be declared as a simple function with two parameters: an integer
parameter and a pointer parameter.

5. Semaphores must be available (for monitor-protection, mutual-exclusion and
signaling from non tasks).

6. A timer for each task must be available (to let a task sleep an amount of time).

The resolution for such timer must be at least 100ms.

Gourinath Banda 11

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Following the requirements stated earlier and their design, the kernel had following data
structures that obviously result in lot of jitter due to the processing involved of such data

structures.

1.4.1.1 Data structures

The kernel has the following data elements:

1.Task Pool: A task pool where the information needed for each task is stored. Each
task requires following elements-

A stack pointer to its stack

A timer

A pointer to the first allocated address of the stack

A pointer to the next task in the actual queue

Each task has one such structure, and is called task structure. So kernel has as many

task structures as the maximum number of tasks under the kernel.

2. Queues: Three queues one each for: killed tasks, tasks that want to run and for tasks
waiting for their timer to run out. Besides these three queues there is one more queue for
the semaphores. Further all the queues have the same data structure with three fields: A
semaphore value (only for semaphore queue), pointer to first task in the queue, pointer
to last task in the queue. The necessary coupling in the queue is obvious from the task

structure.

The synchronization and communication is totally busy waiting or blocking style. And
tasks are having their own stack areas. Tasks and semaphores are created and killed. It
is clear from the data structures that the processing overhead because of kernel is very
high both in terms of time and memory demands on the microcontroller. It is obvious
that processing of queues is time-consuming and results in considerable and varying
overhead (kernel jitter) hence unpredictable response time. No protocol is employed for
the purpose of resource sharing which may result in deadlock and may also result in

unbounded priority inversion adding more to the problem of unpredictable behaviour.

Gourinath Banda 2
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

As the tasks and semaphores are created and killed dynamically, there is every need for
memory management to avoid the problems associated with memory fragmentation. A
major shortcoming of testing with such a safety critical systems with dynamically
allocated memory is that no complete test suite can be created to cover every possible
combination of events and inputs that could create a potential error.

Besides all this the communication is not transparent.

1.4.2 OSEK/VDX Kernel

The OSEK/VDX operating system specification was developed by a consortium of
automotive companies and suppliers, and is a branded kernel specification for
automotive applications. The OSEK operating system is an operating system meant for
distributed embedded control units. So this specification doesn’t define the
implementation details, following this specification several commercially available
operating systems and kernels (OSEK/VDX compliant) are developed for a variety of 8,

16 and 32 bit microprocessors.

In order to comment on this specification lets take a look on the goals and the problems

the specification is designed to solve.

The specification [3] actually includes specifications for three different components, a
kernel, a communications module, and a network management module. A briefing on
kernel specifications is given below. The goals in the definition of the OSEK/VDX
kernel are:
e [solation of the developers from the unnecessary details of their target hardware
e Supplying developers a rich set of kernel features and objects to simplify the
implementation of embedded applications
e Facilitating the integration of software developed by different entities.
An entity is defined as another developer, team or supplier. The kernel specification
defines-
1. A static configuration approach for scalability,
2. A highly efficient scheduling policy, which can be switched between preemption
and non-preemption, thus resulting in a mixed policy.
3. Support for portability of application tasks,
4. The ability to be ROMable.

Gourinath Banda 3

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.4.2.1 OSEK/VDX features

There several advanced features in OSEK/VDX compared to the conventional kernels,

they are:

1. It supports basic and extended tasks.

2. Employs Priority ceiling protocol to avoid problems like deadlock and unbounded
priority inversion.

3. Employs a synchronization protocol.

4. Advanced communication- involving state and event message communication.

5. Events and event counters are used.

The operating system specification was also designed to address stringent real-time
requirements, minimal resource usage, also reliability and cost sensitivity. In all the
implementations of such specification, there is always a queue processing involved
which are around semaphores or tasks that results in jitter. None of the implementations
used advanced and efficient concepts of employing binary vectors for task management,

resource management, synchronization and communication.

The specification is successful in its own purpose but due to implementation involving
queues the potency of binary vectors is not exploited inmost of the developed kernels of
RTOS. So the problem of jitter arising due to kernel is not optimized to the maximum
point. Thus such implementations still hold the traits of same problems that were in

conventional kernels discussed in earlier section because of lists etc.

1.4.3 Asterisk Kernel

This is the kernel developed by MRTC that makes use of all the latest advancements in
the real time system concepts like usage of binary vectors, binary semaphores, non-
waiting type of task interaction (synchronization and communication). Also this is
meant for small-embedded systems with minimum demands on the microcontroller. The
features of Asterisk kernel[4] are:

e A task-model that supports state-of-the art scheduling theory.

e Support for debugging and monitoring.

e Wait- and Lock- free inter-task communication.

e Scalable kernel, meaning that only those subsystems wanted are utilized.

e Predictable performance.

Gourinath Banda 14

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

In addition to these there are common features like portable, compilable etc.

Following the requirements the kernel consists of a Task Control Block (TCB) structure
that has several relevant fields holding the information about the task it belongs to.
Therefore the implementation has a list called TCB list, representing all the tasks in the
system. Further each task has its own stack to be used for context storing on context

switching because of preemption by higher priority tasks.

The block diagram of Asterisk is shown in Fig.3. The tasks under the kernel are basic
tasks, meaning the tasks once started are never blocked, but can be preempted by the

other higher priority tasks if they are released.

Kernel blocks OS blocks
Identity Semaphores
Readyqueue -
Executing |:|
TCBList Displist Tasklist

Wait-and lock-free channel

Wait-and lock-free Buffer

Figure. 3 Asterisk kernel with data structures

In this kernel only the ready task queue (i.e., TCB list) is implemented with the non-
traditional data structures where in a binary string or word or vector is used as the
queue. The bit position in the word itself is used as the index to identify the associated
task. Thus the bit position does the r ole of two things: priority and task identifier in the
TCB table, which is implemented as an array. Implicitly this binary vector approach
gets the job of priority ordering done. But for other purposes like communication and
synchronization still is based on queues and conventional structures. Thus the

conventional queues resulting in very big data structures are not completely over come.

Gourinath Banda 15
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The kernel employs Immediate Inheritance Protocol algorithm to avoid problems
associated with mutual exclusion on shared resources. The semaphore’s structure
consist lot of information like list of owners, number of owners etc. Synchronization
between tasks is achieved by means of signals. And the communication is a non-
blocking type named as Wait- and Lock- free communication, which is implemented

with an array of buffers where in the data to be exchanged, is placed.

However Asterisk kernel used the binary vector concept very limitedly and hasn’t
exploited it completely, still the conventional concepts are prevailing as far as
communication and synchronization is concerned. The binary vectors are not employed
inside the semaphore and signal implementations that make room for the jitter to creep
into the communication and synchronization operations of the kernel. In making the
kernel to be predictable several dummy paths and dummy coding has been put in.
Moreover the lists are traversed until the end even if the element being searched is
found before the end of list. It is nothing but wasting of processor cycles which is not

advisable.

1.4.4 HARTEX Kernel

This is a kernel developed for distributed hard real-time distributed computer control
systems (DCCS). The novel techniques are exploited completely in all the kernel
functions, which resulted in a kernel with much less jitter and memory overhead [5].
These novelties are:
e Integrated scheduling and management of tasks and resources via Boolean
vector processing.
e Integrated scheduling of soft and hard real-time tasks.
e High performance time management for safe DCCS operation
e Synchronization and Communication among tasks through event notification via
binary vector semaphores.
e Communication through implicit (Content-oriented) message addressing.

e No queue or list type data structures because of binary vectors.

Gourinath Banda 16

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Because of all the novel techniques used the kernel resulted in:

- absolutely predictable scheduling of hard real-time tasks

- predictable interaction between real-time tasks

- predictable and deterministic operation of kernel subsystems.

HARTEX is an object-based kernel with its organization as shown in Fig.4. The
modules or subsystems are: Event Manager, Task Manager, Time Manager, Software

Bus and Hardware Adaptation Layer. All the names are self-explanatory.

[Extemal Intermupts L Illernlp‘t
HARDWARE ADAPTATIOHNLAYER ||
—]
&
Py i
i | = TASK MAHAGER — 2
] -
- — mmg
Pl ——Task, | [TasK, | TASKR E
(')
] SYHCHRONEATIOH AHD
COMMUHICATION BUS]

Figure.4 HARTEX organization

The main breakthrough techniques [5] in tick driven HARTEX are:
e Boolean vector processing hence constant execution time of kernel functions

independent of the number of tasks involved..

e Instantaneous signaling of multiple tasks about an event and message using

Boolean vector semaphores.

e Content-oriented message addressing that eliminates the problem of specifying

the source, destination tasks and/or communication objects like mailboxes etc

All these techniques are customized for small embedded systems and new concepts are
added resulting in present kernel HARTEX .. .
The goals of the new kernel HARTEX, are:

- simple task and time management involving only basic tasks.

- new protocol for integrated task and resource management

- integrated timing and external event management

- non-blocking version of synchronization and communication

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

1.5 Requirements for and features of the kernel being developed

As part of the thesis “a scalable real-time kernel for small embedded systems” has been

designed and implemented. The requirements are defined in a manner that the memory

and response overhead because of kernel are as minimum as possible, but not

compromising on the basic functionality of the kernel. The requirements are:

The kernel is meant for a single microcontroller system.

The kernel should manage and support basic tasks only following the specific
tasking model.

It should follow a fixed priority preemptive scheduling policy with a provision
for mixing static-cyclic scheduling with event-based scheduling.

It should be possible to switch the mode of operation of kernel between
preemptive and non-preemptive.

The memory footprint of the kernel should be as small as possible.

The response should be very fast with minimum jitter because of kernel.

It should support non-blocking style of synchronization and communication.

This kernel is a tick-driven one and falls under the category of object-based kernels as

described under the section 1.2.2.The features of the kernel are:

Usage of binary vectors: Wherever possible binary vectors are used. Therefore
no traditional data structures like queues, lists etc. The position of the bit itself is
the identifier of the task and the priority of the task, thus the vector itself gets the
behaviour of priority ordered queue. While all the details pertaining to a task are
placed in a table implemented as array, thus a lookup operation performed into

such array with the identifier gives the task information instantaneously.

Integrated event and timing management: A uniform approach is followed in
treating the tick (timer) interrupts and external events, all are treated as events
and a event descriptor is defined over such event that manifests the activity to be
carried out on the occurrence of such event. Thus the tasks can be released when

appropriate time lapses or threshold of external events occurs.

Gourinath Banda 18

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Usage of binary vector semaphores: Semaphores are used as synchronization
and communication objects, which make it possible to instantaneously notify a

number of tasks about the event occurrence or message ready/arrival.

One common stack shared by all tasks: All the basic tasks under the kernel

share a common stack contributing to lesser memory overhead.

Integrated resource and task management: An elegant protocol called SBPC
protocol [1] is employed to achieve this integrated management. This is

explained under chapter 3(section 3.5)

Content-oriented message addressing: Very advanced communication
technique called content-oriented message addressing is implemented. By this
approach the messages are addressed amongst the tasks just by the name of the
variable being communicated. Thus freeing the user tasks and application
developers from all the associated details of senders, message size, source and

destination etc., thus providing a transparent communication.

Scalability and compilability: Kernel is scalable and compilable according to
the application requirements by configuring the subsystems. By compilable it
means that the data structures in the kernel are allocated depending on the
number of tasks in the application, meaning that if the application has only 5
tasks then only that many resources needed are allocated else if there are 15
tasks then the resources for those many tasks are allocated. This is made

possible because of the static configuration made possible in the kernel.

Gourinath Banda 19

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Layered structure: Layered organization of kernel provides for easy portability
across different chips (as of now it is for AVR 8-bit microcontrollers). The
kernel is designed and implemented in the form of layers, which interact with
their adjacent layers by appropriate interfaces provided. Thus only the bottom
most layer next to hardware (called hardware adaptation layer) is only hardware
dependent. By replacing this layer as per the deployment hardware the kernel is

made completely portable.

Secondary-level scheduling: By exploiting the integrated event management
and semaphores different types of scheduling of hard real-time tasks is possible.
Thus the kernel provides First In First Out (FIFO), Static cyclic and Arbitrary

sequence (evaluated at run time) scheduling. This is explained under chapter 5.

E End of Chapter1 g

Gourinath Banda 20

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 2. Kernel Organization

The kernel is organized into various modules or sub-systems as shown in Fig 5. Each
subsystem is encapsulated into system objects, which interact with each other through
the appropriate interfaces provided. These interfaces are called internal calls. Each
subsystem provides certain public calls that can be invoked by other subsystems and/or
application tasks (which form the firmware). All such subroutines forming the interface

are called as primitives.

TICK INTERRUPT

TASK MANAGER

SOFTWARE BUS
(SYNCHRONIZATION & COMMUNICATION)

Figure 5. The structure of the small kernel developed

INTEGRATED EVENT MANAGER

Analyzing the kernel functionality and partitioning the total system into subsystems
with standard interfacing results in greater flexibility and scalability, because the
subsystems can be customized according to the individual applications requirements
without influencing the internal structure and implementation of other objects

(subsystems).

2.1 Subsystems — their functions

The kernel subsystems are:

Task Manager

Integrated Event Manager
Resource Manager
Software Bus

Hardware Adaptation Layer

Gourinath Banda 21

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

2.1.1 Task Manager

Task manager is responsible for scheduling the tasks following the scheduling policy
and managing the tasks state transitions following the state-transition diagram (Fig 8). It
encapsulates the necessary data structures for this operation and provides the interface
that can be used by other subsystems of the kernel. It is responsible for context

switching (context saving and restoring) on task preemption and resumption.

2.1.1.1 Requirement specifications and associated implementation guidelines

1. The kernel must support basic tasks only. Basic tasks have a liner structure and are

invoked as subroutines, and all such basic tasks use the same common stack.

2. The kernel must support both preemptive and non-preemptive priority scheduling.
To this end there are two primitives enable preemption() and

disable_preemption().

3. Task management should be done according to the basic task transition diagram
(Fig. 8) of the task model in the kernel. Thus the task scheduler is made up of two
primitives or scheduling routines preempt() and schedule(). The latter is used
when a task comes to an end and a new task has to be started, while preempt() is
used when the current task has to be preempted by a higher priority task. This

preempt() primitive encapsulates the context-switching with the scheduler.

4.The kernel should support two types of tasks: one is simple basic tasks (with linear
structure) other is a compound basic task consisting of several subtasks, which
should able to be scheduled following a secondary-level schedule policy local for
this task only. To decide the execution sequence and subtasks to be executed

semaphores are used.(see Chapter 5).

2.1.2 Integrated Event Manager

This subsystem manages timing and external events in an integrated approach, and
invokes appropriate primitives in task manager and the software bus that inturn take

relevant action. More about this subsystem is explained in chapter 6.

Gourinath Banda vA

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

2.1.2.1 Requirement specifications and associated implementation guidelines

1. The external events and internal timing events are to be treated uniformly. So
there is a common data structure for all event descriptors.

2. The events are to be obviously updated by HAL. There two primitives needed
that are invoked on appropriate events from HAL. (See chapter 6).

2.1.3 Resource Manager

This module makes sure that the shared resources are accessed in a mutually exclusive

manner. It uses a protocol that results in integrated task and resource management.

2.1.3.1 Requirement specifications and associated implementation guidelines

1.All the shared resources must be accessed in an atomic manner. For this there are
two services through which the application tasks can lock or free the resource,

which are provided by lock() and unlock().

2.Further it should support the integrated task and resource management following
Stack-based Priority Ceiling protocol. For this purpose a framework is setup as

explained in section 3.5.

2.1.4 Software Bus

This module takes care of providing the duties necessary for inter task synchronization

and communication and is explained in greater detail under chapter 4.

2.1.4.1Requirement specifications

1. It should implement the interaction following the single node local interaction
version of HARTEX Communication protocol consisting of Event notification layer
and Content-oriented messaging layer.

2. Execution time for messaging or event notification between tasks must be
independent of number of tasks involved in the communication. This is made

possible by Boolean vector semaphores.

2.1.5 Hardware Adaptation Layer (HAL)

Event counters are linked with the basic event processing mechanism. Event counter is
updated following the basic event processing. HAL invokes the Integrated Event

Manager following the basic event processing.

Gourinath Banda 3
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

2.1.4.1 Requirement
The interrupt service routines (that are meant for kernel services) should be very short

so that the jitter is minimized.

2.2 Subsystem interactions for kernel operation

All the subsystems interact with each other to meet the requirements and to derive the
needed functionalities of the kernel. For this purpose each subsystem has certain data
structures of which some are global and some are private accessible by means of
appropriate interfaces (primitives and calls) provided. Thus subsystems interact by

calling the relevant primitives under each other.

As soon as the kernel is put into operation first HAL takes control and initializes all the
needed hardware, then it operates on event descriptors eventually invoking the
Integrated Event Manager on various events and Task Manager directly by the
appropriate primitives. Further the Integrated event manager according to the event
descriptors invokes the Task manager and software bus via release, signal and
broadcast primitives. Task manager following the calls from other subsystems
schedules the tasks under it. The tasks and task manager interact with resource manager

whenever a shared resource is to be used with mutual exclusion.

While the tasks on reaching the synchronization points of signaling and checking
whether an event is signaled or not, call primitives (signal _and release and
test_and_reset) with synchronization bus and finish their execution sequence
accordingly. In communication case the tasks call primitives (broadcast and receive)

with the communication bus.

To start the explanation of interaction of subsystem we start with the integrated event
manager module. In this subsystem, there is a data entity that contains details about
which tasks are to be released, which tasks are to be signaled on occurrence of a certain
threshold of associated specific events. Further this data entity also contains the
particulars of semaphores that are to be employed in the case of signaling to achieve the
synchronization associated with event occurrence. This entity is called as event
descriptor. The operations release, signal, and send message operate over the binary

vectors concerned with appropriate modules.

Gourinath Banda 2.

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Now move to task manager, this module operates totally on and around one Boolean
vector called Active Task Vector, which can be modified by calling the primitives
provided. The ATV is updated by the integrated event manager according to the
descriptors of all the events (that are notified by interrupt service routines by HAL

subsystem) as per the application.

Software bus module provides data structures and primitives to access them so that the
inter-task synchronization and communication is done. There are separate semaphores
for synchronization and communication. When a task has to be signaled about an event,
the bit under the flags vector of the semaphore is set. One should remember that an
event is mapped to one semaphore. The task waiting on such event on reaching its
synchronization point checks the value of the bit corresponding to it, if set (i.e., event
has occurred) the task continues its operation, if not set just exits following the non-
blocking style of communication. When coming to communication, the arrival or
readiness of message is signaled by means of semaphores meant for communication and
the receiver task on reaching message reading point checks the semaphore mapped to
the message in which it is interested, if the message is ready the receiver task starts

copying from source buffer to its local buffer.

In the Hardware adaptation layer (HAL) the basic event processing is done invoking
integrated event manager where the important activity of event counter updating is
carried out. In this module (HAL) a timer interrupt updates some flags as per the lapsed
time and invokes event manager on various events, while in the external interrupt
service routines the external event basic processing is done. Integrated event manager
updates the event counters. When the counter expires necessary action is taken. This
action is defined during initialization of event descriptors, and is called as op-code.
Based on the op-code one or more different primitives under various modules are

called. . Thus HAL interacts with Task manager and Integrate event manager modules.

To achieve mutual exclusion of shared resources the resource manager primitives- lock
(resource) and unlock (resource) are called in, thus the resource manager enters into
the interaction ground. All these interactions are clearly explained under subsequent

chapters.

E End of Chapter2 g

Gourinath Banda 25

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 3. Task Management

The application software (called as firmware) in real-time systems is decomposed into
several discrete, significant and appropriate smaller jobs. These portions of work are
implemented as subroutines and are referred to as tasks. All the tasks have a fixed
statically defined priority. Based on the task’s execution characteristics there are two
types of tasks: basic tasks and extended tasks. Basic tasks once start executing can never
be blocked, while extended tasks are those which can be blocked in between their

execution sequence waiting for some signal or event etc.

3.1 Types of basic tasks

All the tasks are implemented as subroutines with no parameters. Further to implement
the hard real-time tasks and ordinary tasks, the tasks under the task manager of current

kernel are categorized into two types: simple tasks and compound tasks.

TASK MANAGER
simpleTask X (void)
{

ST, |---| STy |---| CT; |---|] CTxn //local declaration;
statement] ;
statement2;

STy | : Simple Task with base priority ‘x’ /lete)
taskExit();
CTx |: Compound Task with base priority ‘x’ i

Figure 7. A simple task
Figure 6. Task Manager and application tasks

3.1.1 Simple tasks

These are the simple basic tasks with a fixed sequence of code and no subtasks

involved. Such a task is implemented in code as shown in Fig 7.

3.1.2 Compound tasks

To facilitate for the scheduling of real-time tasks following a different scheduling policy
from that of the primary task manager, several tasks are made as subtasks and put
together under one task, which is called as compound task. The scheduling policies can

be- FIFO (first in first out), static-cyclic scheduling or arbitrary sequence.

Gourinath Banda)6

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3.2 Task management

In a single processor system the kernel will be carrying out multitasking by allocating
microprocessor to various tasks but to only one task at a time. Therefore all the tasks
including the running task and other tasks should be in some meaningful conditions
referred to as states. The task model in the kernel consists of following states:

e Running state - This corresponds to the situation when the task is being
executed, it is to be noted that in a single processor systems only one task can be
in this state.

e Ready state - This corresponds to the situation when the tasks are ready to be
executed but are not currently being executed. One or more tasks can be in this state.

e Preempted state - This is a status when a task has been preempted by a higher
priority task. Again one or more tasks can be in this state.

e [nactive state - This is the case when the task has finished its execution and is

no more in any of the other three states.

The task manager manages the tasks following the state transition diagram explained in

the next section.

3.2.1 Basic task’s state transition diagram

Task state transition diagram (Fig 8) shows the possible states for a task and the valid

state transitions for a task among these available states in the model.

INACTIVE (—F—@NG

A
C E

\ 4

‘ PREEMPTED ’

‘*eees ACTIVE SUPER STATE °**°*°

Fig. 8 Task state transition diagram in the kernel

Gourinath Banda 77

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The transitions are described in the following table:

TABLE I: Valid transitions

Transition

Former state

New state

Description

A: release

INACTIVE

READY

A new task is set into the ready state by a
call to primitive release (tasks). The task(s)
is/are now visible to the task scheduler,
making task to transit from inactive to
ready state.

D: schedule

READY

RUNNING

When there is no running task in the system
scheduler is invoked by a call to schedule(),
which determines the highest priority ready
task, thus this task transits ready to running
state.

C: preempt

RUNNING

PREEMPTED

While one task is running and a higher
priority task is released following A, current
task is preempted and is moved from
running to preempted state. Actually
scheduler is invoked every time after each
transition A by a call to preempt() from
release().

B: preempt

READY

RUNNING

After transition C, the new ready task is put
into execution. The task transits from ready
to running state. Always following
transition C, transition B is done. But it
should be noted that two different tasks
are involved in these two different
transitions.

E: preempt

PREEMPTED

RUNNING

When the highest priority task exits running,
and if the preempted task is the higher
priority task, its context is restored and starts
its execution from where it stopped before
being preempted (transition C). Thus task
transits from preempted to running state.
This is carried out in continuation of F.

F: exit

RUNNING

INACTIVE

A task on completion of its execution leaves
the processor, thus transiting from running
to inactive state.

However every transition described in the above table is made possible available by the

primitives in task manager subsystem. These primitives manipulate the data structures,

which directly influence the states of the tasks.

3.2.2 Task management data structures

The state of each task is determined by the value of certain variables meant for task

management. These are special data structures called Boolean vectors, which are string

or an array of Boolean variables (whose value can be either O-reset or 1-set). The only

attribute of such a data structure is length or size, which is expressed in bits. Mentioning

the position of a bit in the vector, it can be identified and manipulated discretely. The

Gourinath Banda 28

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

advantage in using such Boolean vectors is, the logical operations on them are very fast
and are accomplished in constant time, irrespective of the number of bits being set or
reset. Consider an n-bit length Boolean vector, which has ‘n’ Boolean variables as
illustrated in the Fig 9.

i'position
-1 . .(Lmo 8 7 (L 3 2

|0|1|0|771|1|1|0| I}YOIIIOIOI

Figure.9 Boolean vector

Each bit can be uniquely accessible and manipulate-able by identifying the bit through
its position. Task manager has two variables of this Boolean vector data-type, they are:
e Active Task Vector e preemptionkFlag

e Blocked Task Vector

3.2.2.1 Active Task Vector

As there are sixteen tasks under the kernel, the task manager employs a 16-bit Boolean
vector called Active Task Vector. In this vector each of the bit is uniquely mapped to
one task and the bit-position itself indicates that task’s priority. This means if bit
position is ‘1’, it is mapped to task i with priority also equal to ‘i’. Further this position
‘i’ is used as an index to task address table, which has the pointers to all the sixteen

tasks under the kernel. This is illustrated in the following figure.

—,l :
«—
|)

!
|0|'1||0|1|1|1|1|)7|1|0|1|0|0|ATV

J

Index (i) | Start Address of Task i

0 task OAddress
task 1Address
2 task 2Address
A /4
14 »

14 task 14Address
15 task 15Address

Figure.10 Illustration showing how ATV and start address table are related

Gourinath Banda 20
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3.2.2.2 Blocked Task Vector (BTV)

This Boolean vector is used in the context of resource management and is used to mask
the tasks that are not eligible to be executed because of the shared resource (which is
used during the task’s execution) needed by the task is not available. This vector is

employed following the stack-based ceiling priority protocol [6].

3.2.2.3 Task start address table (SAT)

In addition to this non-traditional data structure there is one more data structure, which
is a table (array) of start addresses of all the application tasks. This is implemented as an
array of pointers to the tasks that are implemented as subroutines with no parameters.

The task start address table is shown in Fig 10.

3.2.2.4 Running Task (RT)

This is the variable that holds the identity of the current running task in the system. The
task is identified by the task number which is also the tasks priority.

3.4 Basic task scheduling without resource management

Based on the value of bit corresponding to the task, and the value of the variable RT in
the system, a task’s state can be determined. The primary duty of task manager is to
schedule the tasks following the scheduling policy and task model of the kernel. See the
task state transition diagram, when the bit (in ATV) corresponding to a task is set (bit
value is 1) the task is in active super state, if it is clear (bit value is 0) the task is in
inactive state. The task that is running is identified by the value of RT. Thus all the

other tasks whose bits are set will be either in the ready state or preempted state.

3.4.1 Task manager organization and startup

Task manager contains the most important scheduler responsible for scheduling the
tasks. This scheduler consists of two system functions implementing the fixed priority
scheduling policy. Task manager is made up of task management data structures,
private functions and primitives. Primitives are the interface functions through which
the user tasks interact with or invoke the kernel modules thus manipulating the kernel
data structures. Private functions mean the system subroutines that can only be called
from within the same module or other modules but not by the user tasks directly.

Actually these private functions are invoked in the primitives.

Gourinath Banda 30

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The following functions and primitives along with task management data structures
make the task manager:
e Private functions
1. schedule()
2. preempt ()

Private functions operate on task management data structures ATV, BTV and
RT. They just read but never modify ATV or BTV during their course, while RT
is updated or modified.
e Primitives
1. release(tasks)
2. taskExit()
3. enablePreemption()
4. disablePreemption()
The primitives enablePreemption() and disablePreemption() are subroutines that

manipulate the preemptionFlag of the system.
The scheduler is called into action in two situations:

o SITUATION A:
When schedule() is invoked by the system. This is the case when there is no

Running Task in the system. This happens when:

a. When the kernel is started for the first time i.e. in the startup when there is no
running task.
OR
b. When a task exits and no running task is there i.e. when task leaves from the

running state and enters the inactive state.

o SITUATION B:
When preempt() is invoked inside the call to release(). This is the case when a task
is released, thus When a task is released i.c., a task when leaves inactive state and

enters ready state.

Gourinath Banda 3
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The operation cycles of scheduler in both situations are explained below in steps:

SITUATION A:
a. When the kernel is started for the first time and there is no running task.
Scheduling is initiated immediately after all the necessary hardware and kernel data

structures are initialized. It is explained below how it is achieved:

1. When the system is started, main() routine takes control in which all initialization

(hardware and kernel) subroutines are invoked. The pseudo code of main-

main ()

{
initialize_hardware() ;
start_kernel () ;

}

2. The subroutine initialize hardware() does the hardware initialization necessary

for the kernel and the application software. Its pseudo code:

initialize hardware() ;

{
/* initialize ports, interrupts etc” /
[* initialize timers */

}

3. The start kernel subroutine initializes the kernel and starts the task manager

(scheduler) invoking schedule(). Its pseudo code:

start _kernel()
{ .. ; llinitialize the needed kemel data structures etc
while (TRUE)
{ while (ATV) Il'if there is any active task i.e ready task
;chedule () ; ll'scheduleris always active in the back ground
, }

Very important:
Notice the infinite loop in the start _kernel() subroutine, where in the schedule () is
invoked whenever there is nothing in the foreground. System function schedule() is

invoked only at this point by the system itself (i.e. main routine) and nowhere else.

SITUATION A: (continued)

b. When a task exits no running task is there i.e. immediately after every transition F.

1. A task about to exit calls taskExit() making transition F.

2. Microcontroller becomes free and returns to the infinite loop of the system.

3. The schedule() is invoked if there is any active task(ready task).

In both cases under SITUATION A, schedule () does:
1. Finds the set most significant bit ‘HP” in ATV.

2. Starts this highest priority task task _HP().

SITUATION B:

When a task is released by calling primitive release() i.e. task on leaving inactive

state and entering ready state.

This release of task can be in the startup or when a task is running.

1. When a new task is released by calling primitive release(tasks), the bit corresponding

to the task(s) released is set. The Boolean vector argument specifies the tasks to be

released. Transition A is affected.

1) The primitive release() invokes the scheduler by calling preempt(), where the

set most significant bit position in ATV *HP’ (highest priority task) is found,

but there can be two cases-

e Case 1 ‘No running task in the system’: Then the task task HP() is called

and starts execution.

e (Case 2 ‘There is running task in the system’: Then the value of RT is
compared with the (HP) in the ATV. Accordingly-
o Ifthe RT is less than HP:

1.

The current running task task RT() is preempted following the
transition C.

The context of running task is pushed (saved) on stack.

3. The task number of running task is pushed (saved) on stack.

The new task rask HP() is called and starts executing
following transition B.
After task task HP () finishes execution calling taskExit()the

recently preempted task is restored and starts execution

Gourinath Banda 33

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

following the transition . If any preemption arises the step (2) is
repeated.
o If the RT is not less than HP- the current task task RT continues
execution, thus no transitions occur.

2) A task after completion of its execution sequence calls a primitive taskExit()
and exits the scheduler or system following transition F. This taskExit() clears
the bit in ATV that corresponds to the task exiting.

3) When there is no running task scheduler is invoked by call to schedule().

4) The scheduler finds the set most significant bit position ‘HP’ in ATV, loads the
task ‘task HP()’ and starts executing the task.

3.4.2 Task management private functions and primitives

e private functions

These private functions implement the defined fixed priority preemptive scheduling

policy for the task scheduling. The task manager can only call these functions.

1. schedule() : On being invoked finds the most significant set bit in the ATV and
starts the task corresponding to that bit. This is invoked by the system when there is
no running task and there are active (ready) tasks.

schedule()
if (ATV)

RT = find_msb(ATYV);
Start_the_new_HP_task();// call the new task
}

2. preempt() — When invoked finds the highest priority task, if there is any active task
and if is greater than the running task priority running task is preempted and new task is
started. This function does context switching associated with preemption and

resumption. The pseudo code is given here.

preempt ()
{
if (preemptionFlag == TRUE)
{
HP = find most significant bit (ATV);

Gourinath Banda 3.
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

if (RT != NO_TASK) //ifthereis any running task
{
if (HP > RT)
{
STORE_RUNNINGTASK_ CONTEXT;

STORE_RT; // store running task number on stack

RT = HP;

Start the_new_HP_task () ;// call the newtask

LOAD RT; //restore the task number thatis preempted from stack
RESTORE_PREEMPTED TASK CONTEXT;

RT = HP;
Start_the_new_ HP_ task () ;// call the new task

}
}
}

e primitives

These are invoked by the user tasks and get the services of task manager.
1. release(Boolean vector tasks) — This primitive is called whenever a task(s) has to
be released. This primitive is invoked by passing Boolean vector argument that

indicates the tasks to be released. It just sets the bits corresponding to the tasks

released and calls preempt().

release (Boolean vector tasks)

{

ATV = ATV | tasks,
preempt()

}

2. taskExit() - This is called from the task that is exiting the scheduler. When a task
has reached its finishing point, before leaving the running state it calls this primitive.

It just clears the bit in ATV that corresponds to the exiting task.

taskExit ()
{

clear_the bit_corresponding_ to_exited task();
RT = NO_TASK;//thereis no task running in the system
}

3. enablePreemption() and disablePreemption() — The first primitive is called to
change the mode of operation of the system from preemption disabled mode to
preemption enabled mode. While second one is for disabling the preemption mode.

The pseudocodes are

enablePreemption() disablePreemption()
{ {
preemptionFlag = TRUE; preemptionFlag = FALSE;
} }
Gourinath Banda 35

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3.5 Integrated task and resource management — SBPC Protocol

In multi-tasking kernels to avoid inconsistency in data and resources that are shared, the
shared resources need to be used in an atomic fashion. The general atomic access can be

atomic access can be viewed in two different styles:

e Use of object or resource reservation: If one task reserves a resource then
competing tasks when reach the point of using the locked resource are told:
“This resource is locked, go and do something else, or give up your time slot”.
The concept requires use of a scheduler in the process of resource management.
This traditional kind of atomic operations are implemented by using concepts
like mutex or semaphores to give a thread mutually exclusive access to a
resource. Primary design issues are avoidance of deadlocks and perhaps

minimizing the amount of time a resource is locked.

e Use of execution locking: If one thread needs exclusive access to a shared
resource then it locks the resource and all or just competing threads, are
prevented from even getting executing time for as long as the locking last. The
concept used is: “I do not want anybody to interrupt me for a while”. The
concept does not necessarily require use of a scheduler. Thread deadlocks
cannot take place. A primary design issue is the amount of time a resource is

locked.

So by considering the second approach we are sure that deadlock can never happen in
the system. A protocol as per the second approach proposed by Liu [6] called stack-
based ceiling priority protocol is followed to achieve integrated resource and task

management in the kernel.

For this purpose one should know the resource management framework under the

kernel, it goes as following:

e Resource Control Block(RCB): As the kernel is a static the shared resource are

known in advance, so each of such shared resources are accessed through a

Gourinath Banda 36

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Resource Control Block (RCB) which have the ceiling priority for the resources
which is equal to the highest priority task’s priority that can access the resource.
Illustration- say resourcel can be shared by tasks task 1(), task 4() and
task 8 with priorities 1, 4 and 8. Then the RCB defined as-
RCB [resource_identifier] = {ceiling priority} for this resourcel looks like:
RCB [resourcel] = { 8 }, since among all the tasks that have access to

resourcel the highest priority task has a priority of 8.

e System Ceiling: Further there is one parameter called system ceiling that at any
instant equals to the highest value of ceiling priorities of all the resources locked

in the system at that instant.

3.5.1 Stack-Based Priority Ceiling (SBPC) protocol

There is a variable [](t), which represents the system-ceiling at time ‘t’. This variable is
initialized to a value), which is less than the least priority of all the tasks in the kernel.

Defining Rules of the Protocol [6]:

0. Updating of the System Ceiling: When all resources are free the system ceiling
[1(t) will be equal to Q. This [](t) is updated each time a resource is locked or

unlocked.

1. Scheduling Rule: After a task is released it is stopped from execution until its
assigned priority is higher than the current system-ceiling [[(t) of the system. At all
times tasks that are executable are scheduled in a priority-driven preemptive manner

according to their assigned (base) priorities.

2. Allocation Rule: Whenever a task requests a resource, it is allocated the resource.
It is clear from the scheduling rule that a task is schedule only when all the resources it
needs during its execution are free, because this happens only when the base priority of
task is greater than [](t). Following this no dead lock is possible. Base priority is the

task priority that is allocated to it statically; it can be used as a synonym to fask priority.

Gourinath Banda 37

'/

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3.5.2 Integrated task and resource management — implementation

Data structures:

For this resource management following SBPC protocol four data items are introduced,

they are:

e Resource Control Block - RCB
e System-ceiling - [(t)

e System-ceiling stack - [][-stack
e Blocked Tasks Vector - BTV

System-ceiling stack ([][-stack): Following the rule 0 of the protocol the value of
system-ceiling is updated whenever a resource is occupied or freed. But to retain the

history we need a data entity, this [[-stack is exactly for that purpose.

Blocked Tasks Vector (BTV): To accommodate the rule 1 of the protocol the tasks
that are not eligible to be executed owing to resource unavailability need to be marked.
This masking of non-eligible tasks is done by BTV, which is also a 16-bit Boolean
vector. Again the bit position corresponds to task number. So by setting a bit in the
BTV, that particular task is blocked meaning no more available fro scheduling. The use

is further illustrated under the primitives’ section 3.5.3.

3.5.3 Private functions and primitives

Resource manager realizes the protocol’s rule 0 through its primitives — lock() and
unlock(). While the rule 1 is achieved in task management via primitive- preempt().
And rule 2 is obvious because of rule 0 and rule 1. All the other primitives remain
unchanged as stated under section 3.4.2. All the primitives’ pseudo codes are given

below.

The resource manager module is an individual entity with the said data structures and
primitives (see section 3.5.3.1) , but its operation through its primitives implementing

the SBPC protocol results in integrated resource and task management.

Gourinath Banda 38

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3.5.3.1 Resource management primitives

Resource manager provide its service to user tasks with two primitives- lock(resource)
and unlock(resource). Lock() primitive is used by task to lock the resource on which it
is called. While unlock() frees the resource. The region in the task execution which
uses a shared resource is called critical region. At the beginning of the region lock() is
used while at the termination unlock() is used. When a task uses more that one shared
resource during its execution, special care must be taken while locking multiple
resources. The locking scenarios should confirm to the following sequence of locking
and unlocking:
1. Resources are locked sequentially: In this case the resources are locked and
unlocked in series, i.e. every lock of certain resource is followed by unlock of
the same resource. An example sequence of this type-

...lock(R1).....unlock(R1) ...lock(R2).....unlock(R2) ...lock(R3).....unlock(R3)

2. Nested locking of resources: In some cases a task needs to use multiple shared
resources simultaneously. The syntactical rule that has to be followed is shown
by the following example.

...lock(R1) ...lock(R2)...lock(R3)...unlock(R3) ...unlock(R2) ...unlock(R1)

This rule exactly resembles the rules for bracket opening and closing around
mathematical terms in an expression. Like (R1(R2(R3) R2)R1), opening
brace is analogous to locking and closing is analogous to unlocking. The rule of
thumb in this case is the sequence of locking should always be followed by the

opposite sequence of unlocking.

3.5.3.1.1 lock(resource_name)

The pseudo code for the primitive is-

lock (Resource resource)
{
if ceiling priority of resource > = system ceiling)
{
push On_Pi Stack (current system ceiling);
PI = RCB[resource] .ceiling;// update system ceiling
BTV = (TVEC)~(BTV | (TVEC)PI_Table[PI+1]);
//clear the bits corresponding to non-
//schedulable tasks under BTV

The execution of lock() proceeds as following:

1. If the priority of the resource being locked is greater than or equal to the current
system ceiling priority goto2 else exit

2. The current system ceiling is pushed on Pl-stack.

3. The system ceiling is updated with the ceiling priority of the resource locked.

4. All the bits corresponding to tasks whose base priority is not greater than the

updated system ceiling priority are reset, while other bits are set.

The main job done here is updating BTV to mask the non-executable tasks.

3.5.3.1.2 unlock(Resource resource_name)

The pseudocode for primitive:

unlock (Resource resource)
{
if (system ceiling == resource_ceiling)

{
pop_the PiStack(&PI) ;

BTV = (TVEC)~(BTV & (TVEC)PI Table[PI+1l]) ;
//unmask tasks based on past¤t system ceilings

preempt () ;
}

The execution of unlock proceeds as per following sequence:
1. If the system ceiling equals to the ceiling of resource being unlocked goto2 else exit
2. Get the next highest system ceiling priority by popping the Pl stack and assign this
value to the current system ceiling.
3. Unmask all the tasks whose priorities are greater than current system ceiling.

4. Invoke the scheduler by calling preempt().

3.5.3.2 Augmented task management functions and primitives

The private function preempt() implementation results in the needed integration
between task manager and resource manager resulting in integrated task and resource

management. All the other functions and primitives remain same.

3.5.3.2.1 preempt() private function

After every release(tasks) or unlock (resource) preempt () is invoked. The sequence

of execution of this function is as following:

1. Evaluates the most significant bit ‘HP” in (ATV & BTV).

2. If there is any task running then goto3 else gotol1.

3. If HP is greater than RT i.e., if the running task is not the highest priority task
among the schedulable tasks then goto4 else do nothing.

4. Store the context of the running task by pushing all the registers on stack.

5. Store the running task number RT by pushing it on stack.

6. Start the HP task by the index HP to Start Address Table (SAT) of tasks.

7. After the task task_HP finishes execution the control returns to preempt then stack
is popped restoring preempted task number into RT. So RT now holds the task
number.

8. Again the stack is popped thus restoring the context of task task RT

9. Now the control returns to the point in preempted task where it left last time.

10. The task RT is executed return.

11. Start the new task task HP(') and let it run.

The pseudo code is-

preempt ()
{
if (preemptionFlag = = TRUE)
{
HP = find most significant bit (ATV & BTV);

If (RT != NO_TASK) [lifthereis any running task

{
if (HP > RT)

{
STORE_RUNNINGTASK CONTEXT; |/ store the contexton stack

STORE_RT; Il store running task number on stack
RT = HP;

let _the task RT to_execute;// call the newtask
LOAD_RT; Il restore the task number from stack

RESTORE PREEMPTED_ TASK CONTEXT; // restore the context fromstack

}

else

{
RT = HP;

let the task_RT to_execute; [ljustletitexecute
}

The stack management becomes very simple because of this preempt() function.
Observe the following situation of the system, where task 1 is running, stack is empty:
1. An interrupt comes and task 2 is released and eventually preempt() is called.
2. Task 1 is preempted and stack stores first the context and then the task number.
3. Task 2 starts running
4. One interrupt occurs releasing task 4 and preempt is called from task 2, context
and task number are pushed on stack.
5. Task 4 starts running and finishes execution, now the control returns to preempt()
call in task 2, task 2 number and context are restored was.
6. Task 2 runs and on finishing execution returns to preempt() in task 1.

7. Task 1 number and context are restored and task 1 continues execution.

task_1() task_2() task_4()

{ { {

" | / SAVE -

.....) reemot() task_4();

lpreempt A T;p<~.PE,) LOABR- - f_._ . ;

taskEXt(); ' T taskExit(), Vemi o\ [T LtaskExit();

) } }
task2_NUMBER j Interrupt Request(IR Q)
task2_CONTEXT ¢——> Push on stack()
task1_NUMBER —» pop_stack()
task! CONTEXT | _.__ » return

Figure.11 Illustration of Preempt() and associated context switching etc.

An important thing is to be noticed here, the preempt() indicates(see step 8 in the
execution of preempt) which preempted task to be run, after finishing the higher priority
task it loads that preempted task’s context . Now it starts executing the preempted task.
As the context is already restored the task starts from the point where it was preempted

during preemption.

3.5.3.2.2 schedule() private function
This is invoked whenever there is no task to run. So the pseudo code for schedule is

very simple its execution is as following;:
1. If there is any active task it finds the Highest Priority task else exits.

2. Then just lets the task to execute.

Gourinath Banda 4?2
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

See the pseudo-code for schedule().

schedule ()
{
if there is_any active_ task
{
RT = find most significant bit (ATV) ;
let_the_ task RT to_execute; Iljustletit execute
}
}

3.5.3.2.3 release(Boolean vector tasks) primitive

Integrated Event Manager or tasks call this primitive, by passing a vector argument.

This vector is OR-ed with ATV.

release (Boolean vector tasks)

{
ATV = ATV | tasks,

preempt();
1

3.5.3.2.4 taskExit() primitive
When a task has finished its execution sequence, before leaving the running state it calls

this primitive. This call just clears the bit in ATV that corresponds to the task that is

exiting.

taskExit ()
{
clear the bit corresponding to_exited task();

RT = NO_TASK;// thereis no task running in the system
}

3.5.3.2.5 enablePreemption()

The first primitive is called to change the mode of operation of the system from

preemption disabled mode to preemption enabled mode.

3.5.3.2.4 disablePreemption() — This one is for disabling the preemption mode.

The pseudocodes are:

enablePreemption() disablePreemption()
{ {
preemptionFlag = TRUE; preemptionFlag = FALSE;

1 }

3.6 Case Study

Illustration of how integrated task and resource management is achieved. Consider a

case when all the shared resources are free and task task 2 is runnin

g. The figure

PI STACK

e
8
<
2
el
E=
<
1) schedule () - -
S @ I 1d ON
m =~ () uxa ysey
3 - task exit() preempt
Q contiues
e}
=
m) preempt
o o task exit (nno/, continues
[&
- £
= ()didaud 2
g Eple) _
: - > 5
= &
E - 5
= (1) dwoard 2
] =]
x =]
s @ task: exit () preempt ;
hS continues 0000 00TT 0010 ITO0
g
8
g
g T S S - s oot 1 |-
m ﬂ. () ydwodaid (syjsey)aseaan 0000 00TT 00TIO0 ITOT !
Y ©
- G I —— . S AN
o 2 () 3dwda, (syse3)ased)ol = 0000 00IT 0010 1100
= I
% & @ w BedE s L2 I _
2 > = 0000 00IT 0010 0000
T 0]]
M = — Id AR
@ .WJ 7_ 6_ 5_ 4_ 2_ ALd ALV
4 -4 -4 4 -4
wn wn wn w2 wn
< < < < <
-~ -~ -~ +~ -~

Figure. 12 Illustration of integrated task and resource management.

STEP 0: In the beginning initial values of all relevant variables:
ATV =0000 0100 RT =2 PI =-1 (Q) //as said in SBPC Protocol
BTV =0000 0000

STEP 1: Task 2 locks Resource R 5(Ceiling Priority is 5). Following the call of
lock(R_5), the present PI (-1) is pushed on stack, the updated values are:

BTV =1100 0000 PI=5

STEP 2:

a) New tasks task 4 and task 5 are released, by release (0001 1000). ATV and BTV are
updated accordingly.

ATV=0011 0100 BTV=0011 0000

b) preempt() is invoked inside the release (tasks vector) and accordingly nothing is

changed. RT =2 PI=5

STEP 3:
a) Task 7 is released by calling release(1000 0000). ATV is updated accordingly.
ATV=1011 0100

b) preempt() is invoked inside the release (tasks vector) and accordingly task 2 is
preempted its context is stored. New task 7 is executed. Thus the values of variables are

changed. RT =7 PI=5

STEP 4:
a) Task 7 completes its execution and calls task exit(). ATV and RT are updated.
ATV=0011 0100 RT=NO_TASK

b) Preempted task task 2 is resumed by restoring its context.

RT =2 PI=5

STEP 5:
a) Task 2 unlocks the resource R 5. The values of PI, BTV are updated accordingly.
Also the stack is cleared.

BTV=0000 0000 PI=-1

b) preempt() is invoked and accordingly the tasks are scheduled. The task 2 is
preempted, its context is stored, and the new task 5 starts execution.
RT =5

Gourinath Banda
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

()]

STEP 6: Task 5 locks Resource R 6, whose Ceiling Priority is 6. Following the call to
lock(R_6), the present Pl (-1) is pushed on stack, the value of Pl is updated
accordingly. PI=6

STEP 7:

a)Task 5 unlocks the resource R_6 by calling unlock(R_6) primitive. The values of P,
BTV are updated accordingly. Also the stack is updated or cleared.

BTV=0000 0000 PI=-1

b) preempt() is invoked and accordingly nothing happens.
RT =5

STEP 8:

a)Task 5 completes its execution and calls taskExit(). ATV and RT are updated
accordingly.

ATV=0001 0100 RT=NO_TASK

BTV = 0000 0000

b) Cotrol returns to the previous preempt call and as there is no running preempt()
finds the HP = 4 and starts the new task 4.
RT =4

STEP 9:
a)Task 4 completes its execution and calls task exit(). ATV is updated accordingly.

ATV=0000 0100

b) Task 2 is restored and continues. RT =2

STEP 10: Task 2 completes its execution and calls task exit(). ATV is updated
accordingly.

ATV=0000 0000

E E nd of Chapter3 g

Gourinath Banda 46
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 4. Task Interaction

The requirements for the kernel to be simple (small memory foot print), fast and
powerful, are met by the novel techniques used to achieve task interaction. The tasks are
basic tasks which cannot be blocked, so the techniques should achieve non-blocking
type of interaction among the tasks. Tasks interact in two ways:

e Synchronizing each other

e Communicating with messages.

4.1 Task synchronization

Synchronization in existing kernels

Following the types of tasks under the kernel, several synchronization paradigms are
implemented in different kernels. Synchronization (defined under next section) is
basically of two types:
Synchronous: The sender invokes the request (signals) and blocks waiting for
the response. The task is in busy waiting or is blocked.
o Asynchronous: The sender issues the request (signal) and continues processing;

there is no waiting for response.

In terms of complexity synchronous type is more difficult than the asynchronous type.
Synchronous techniques are not recommended for embedded real-time systems because

of increased complexity, limited functionality and unpredictable behaviour. Under the
HARTEXj, kernel developed all the tasks are basic tasks that can never be blocked, so it

employs asynchronous producer consumer interaction which is of non-blocking type.

Task Interaction Protocol

Task Communication
LMessage communication via content oriented message

LAsynchronous event notification via vector semaphore

Task Synchronization

Asynchronous event notification via vector semaphore

Figure.13 HARTEX|, task interaction protocol

The tasks in HARTEX, kernel interact following the scaled down HARTEX

communication protocol [9]. The original HARTEX protocol is meant for both basic
and extended tasks and achieves distributed interaction. This protocol is scaled down to
basic tasks only and for interaction in single node. The organization of scaled down

version of HARTEX communication and synchronization protocol is as shown in Fig

13.

What is synchronization between tasks?

Some task(s) need to start or continue its execution beyond a certain point in its
execution path, depending on whether the other task has completed some execution.
This is called task synchronization. Such points in each task that are significant in task
synchronization are called synchronization points. The synchronization and
synchronization points in two tasks (interacting by synchronizing) are illustrated with
the following figure (Fig 14).

task 1() task 3()
{ {
statementl; statementl;
\statement 25 xif (task_1.statement2_executed)

taskExit(),
}

askExit(),

Synchronization
point in task_1

Synchronization
point in task_3

Figure.14 Task synchronization basics

The reason for such synchronization among the tasks is very much obvious in several
real-time applications. Consider an application where in one task (task 1) is doing the
data acquisition from the sensor and carrying out some preprocessing, while the other
task (task 3) is doing some control using this condition variable reported by fask 1. Say
if task 1 hasn’t finished its statement 2 and task 3 is released, there is no need for
task 3 to proceed for computing control action. But if fask [has produced the plant

condition variable by executing statement 2, task 3 will continue its execution.

Gourinath Banda 48

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

4.1.1 Event notification through Boolean vector semaphores — primitives

In the kernel, synchronization among the tasks is done by means of event notification.
In event notification a synchronizer task raises an event on reaching its synchronization
point, while the synchronizing task on reaching its synchronizing point just check for

this event, if occurred it will continue execution else it just exits.

Event notification is realized by means of semaphores called Boolean vector
semaphores. Semaphore is an object or data entity that each task can check and then
change the value. Depending on the value found the task takes a different course of
execution accordingly. Boolean vector semaphore is a special semaphore, which
consists of Boolean vector of 16-bit length, each bit corresponding to one task under the
kernel. So each such semaphore is mapped to one unique event, which makes it possible

to implement event notification in a predictable manner.

4.1.1.1 Semaphore Control Block (SCB)

The semaphore is implemented as a Semaphore Control Block (SCB). Therefore for
each event there is one semaphore on one-to-one unique mapping, and each semaphore

is having a SCB. The SCB is a data structure with two fields as following:

Semaphore Control Block

{
Boolean vector flags;

Boolean vector tasks;

}

Illustration of SCB:

SCB 15141312 11109 8 7 6 5 4 3 2 1 0

flags (0 |0 (O |0 (O |0 [0 O O 0O OO0 O 0|0 O

released tasks |0 |1 {0 |0 |0 |1 |0 |O (O (O (O (O (1 [0 |0 |O

In the above figure of the SCB (initialized so) notice the values of flags and tasks
vectors. The meaning of released tasks is explained later. If task(s) has to be signaled
about an event that is mapped to this semaphore or SCB, the flags vector has to be
modified such that all the bits corresponding to the tasks signaled are set. Say for
example tasks task 15, task 14, and task 1 are signaled. Then the flags field in SCB is

as following:

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

SCB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

flags 1 (10 /0 ({0 (0O OO |O|O0O|O0O OO |O |1 |0

released tasks |0 (1 (O (O (O (O (O (O [0 [O [O [O |O |O |1 |O

The synchronizing tasks on reaching the synchronizing points just check the bit under
flags field corresponding to their task number if set they continue beyond the

synchronization point.

The second field released tasks indicate that tasks (for example in this SCB: tasks 14,10
and 3) are to be released on occurrence of that event. It is for the obvious reasoning
associated with non-blocking event notification, the released tasks (TASKS) is the

subset of tasks that are signaled.

4.1.1.2 Organization of SCB into SCB_Table

There are sixteen (16) semaphores for the purpose of task synchronization. All these
SCBs are put in a table (implemented as array), where each semaphore is accessed by
the index into that table (array). Each indexed row corresponds to one SCB. The table is
as shown in Fig 14. The first column in the table is not an actual column in the table; it

is just shown here to indicate the semaphore or SCB ID. If we need to access

semaphore i or SCB i, we just say SCBJi]. SCBIi]
SCB_0 |flags
tasks
SCBJ14] SCB_1 |flags
SAY I tasks
; flags
tasks
flags
tasks
SEB1# | flags
tasks
SCB_15 | flags
tasks
Figure 15. SCB Table structure and accessing the table
Gourinath Banda 50

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

4.1.2 Synchronization primitives

The semaphores i.e., SCBs which are the kernel data structures are accessible by all the
tasks but only through the appropriate interface provided in synchronization module

under software bus. The primitives for synchronization through event notification are:
1. signal and release (semaphore, tasks)
2. test and reset (semaphore)

It is by calling these primitives on reaching the synchronization points the user tasks

will use SCBs in SCB table for event notification.

4.1.2.1 signal _and_ release (semaphore, tasks) primitive
On calling this primitive on a particular semaphore and specifying synchronizing
tasks (a Boolean vector), the tasks are notified about the event with which the

semaphore is mapped. The pseudo code for such primitive is given below.

signal and release (char semaphore, BooleanVector tasks)

{
SCB[semaphore] .FLAGS = SCB[semaphore].FLAGS | tasks ;
ATV = ATV | SCB[semaphore].TASKS ;

The arguments passed to this primitive are semaphore and tasks. Semaphore is of
numeric type that is used as index to the SCB table, while argument ‘tasks’ is a Boolean
vector. The semaphore argument identifies the SCB, while the tasks(Boolean
vector) mentions the tasks that are to be signaled of this event. This is done just by OR-
ing the tasks with flags field of the corresponding SCB. The other job done by this
primitive call is releasing of the tasks mentioned by fasks field under that SCB. This
primitive is called on reaching synchronization point at the sending end i.e.,

synchronizer task, from where we need to notify/signal an event.

4.1.2.2 test_and_reset (semaphore) primitive

This primitive is called by the synchronizing task(s) on reaching the synchronizing
point in their execution sequence. The synchronizing task when running (running state)

on reaching the synchronizing point in their execution sequence, checks whether the

Gourinath Banda 5
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

semaphore (to which event is mapped) has signaled it or not, if signaled it starts it
continues executing else the task just exits. The pseudo code for primitive is given

below.

char test _and reset (char semaphore)

{
if (SCB[semaphore] .FLAGS[RT] = =1)
Il check whether the semaphore has signaled the running task or not

{
SCB [semaphore] .FLAGS[RT] = 0 ; //clearthe bitin FLAGS vector
return (true) ;
}

else

{

return (false) ;

}

4.1.3 Illustration of usage of primitives

As said previously, the signal_and_release() is called within the synchronizer task
raising the event, and the event is mentioned by the semaphore. While the
test_and_reset () is called on a semaphore by the synchronizing tasks interested in that
event. Thus whenever an event occurs corresponding semaphore is signaled and
receiving task checks the corresponding semaphore. Consider a synchronization
example between two tasks- task 1, task 2 and task 5: task 2 is the synchronizer task
signaling an eventl mapped with semaphorel on which the synchronizing tasks task 1
and task 5 are to be synchronized, while its needed to release task 1.

The sequence goes like following:

1. Initially the semaphorel i.e., SCB[semaphorel] looks like this:

SCB[1] 15 14131211109 8 7 6 5 4 3 2 1 0

flags [0 |0 (O |0 |0 (O |0 (O |0 |0 O |0 0|0 |0 O

released tasks |0 |0 [0 (O |O |O |O |O [O (O |O |O |O |O |1 |O

2. Task 2 on reaching the synchronization point signals the eventl by calling

signal and release (semaphorel,

tasks). The argument tasks holds the

value 0000 0000 0010 0010 (0x0022), that is the bits corresponding to task 1 and

task 5 are set in the fasks argument.

3. The call to signal and release():

i. updates flags field under the SCB[semaphorel] whose value become:

V Vv
SCB[1] 15 14 13 12 11 10 9 8 7 6 [5\4 3 2 m 0
flags 010 |0 (0 |0 |0 |0]O O |O \1} 01010 \1} 0
tasks 010 |0 (0 |0 |0 |0 |0 O (0 |O0]|O]O]|O |1 O

ii.

1.
ii. If that bit -

a. 1s set:

Checks flags[5] / flags[1] i.e., fifth or first bit under flags.

1. clears the biti.e., flags[5] / flags[1] is reseg
SCBJ1] 15 14 13 12 11 10 9 8 7 6 (5-\

Task task 1 is released thus the bit ATV [1] under ATV is set.

4. Tasks task 5 or task 1 when running, on reaching its synchronization point

checks the semaphorel by calling test_and_reset (semaphorel). This call:

This bit is
cleared by
task_1

432[\0

[
y
i

b. if not set — returns FALSE.

ﬂags 010 |0 |0 |0 |0 |0 |0 |0 |O \Oj 010 1|0 \ 0
tasks 0|0 |0 |0 |0 |0 |O|O |0 |O OO |00 0
2. returns TRUE.

5. If the call returns true it continues to execute beyond the synch point, else it just

}

exits.
SYNCHRONIZFR TASK SYNCHRONIZING TASK
task 2 task 5
{ {
* signal_and_release(semaphore1,0x0022); |f &est_and_reset(semaphore1) &
T
ié's"k'Exit(); }
} taskExit();

Gourinath Banda

)]

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

4.1.4 Different patterns of task synchronizations

The tasks synchronization (non-blocking style) can be between two or more, depending
on how many synchronized tasks and synchronizing tasks are involved there are
different event notification styles, the ones supported by present kernel are:

e One-to-one event notification

e One-to-many event notification

e Many-to-one event notification

e Many-to-many event notification

e Broadcast event notification
All the styles of synchronization or event notification are achieved by the value of fasks

argument passed to the signal and release (semaphore, tasks) primitive call.

4.1.4.1 One-to-one event notification

In this style one task signals an event (one) to one task. This is achieved by invoking the
signal and release (semaphore, tasks) primitive with tasks argument having a value

with only one set bit.

4.1.4.2 One-to-many event notification

When the argument tasks in the signal and release invocation has two or more set bits,
the event notification achieved is of one-to-many style. Thus by this type of event
notification one task (synchronizer) can synchronize two or more tasks (synchronizing

tasks). This is as illustrated under 4.1.3.

4.1.4.3 Many-to-one event notification

In this case many tasks (two or more) notify individually one separate event to one
single task via the primitive signal_and_release (semaphore, tasks), but this primitive is
called individually in each of the two or more separate synchronizer (notifying) tasks at
their synchronizing points. Further each such call to the primitive is invoked on
different semaphores (different events), while the values of ‘tasks’ vector in all these
calls have one common bit position set that corresponds to the notified or signaled

task(synchronizing task). This results in many-to-one event notification.

Gourinath Banda 54

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The pseudo code of notified task looks like following.

task N

{ if (test and reset (0))
{ //do something0

if (test}_and_reset (1))

{ //do somethingl

}

if (test_and reset (n))
{
w...; [/do somethingN
}
task_exit();

}

This is one kind of notified task pseudocode, but it can also be like this-

task N

{
if (test_and reset(0) & test and reset(l) & test and reset(2))

{
//do something

}

task_exit();

}

The synchronizer task remains the same as illustrated in section 4.1.3.

4.1.4.4 Many-to-many event notification

Several one-to-many and/or many-to-one and/or one-to-one event notifications when
brought together will result in many-to-many style of event notification. This is

mentioned for the same of completeness.

4.1.4.5 Broadcast

This style of event notification is a special case of one-to-many type event notification;
where one task notifies about an event to all the tasks under the kernel. When the
synchronizer task wants to broadcast about an event it just invokes the
signal_and_release(semaphore, tasks) with fasks argument having all the bits set. Thus

the broadcast is implemented in the kernel.

4.2 Task communication via content-oriented message

addressing

The kernels provide means for tasks to communicate among themselves to achieve the
needed system functionality. This kernel under discussion is meant only for real-time
systems with single microcontroller; hence all the communication is local between task

in one chip. Further as said earlier the communication is also of non-blocking type.

4.2.1 Content-oriented message addressing

An advanced communication technique called Content Oriented Messaging is
employed. As the name implies, the particulars of senders, receivers and corresponding
message buffers are not specified explicitly but are implied by the name of the variable
or message being sent or received. The task sending a message is referred to as sender

task, while the task receiving the message as receiver task.

The communication is implemented on top of the non-blocking synchronization concept
explained under previous section, where the message arrival or readiness is notified by
means of an event (which is mapped to a Boolean semaphore). These semaphores are
called Messaging Semaphores, which have the semaphore control blocks with same
structure as of synchronization semaphores. So the sender task on reaching its
communication point sends message, actually speaking it doesn’t send the message but
it just notifies the receivers that message is ready by signaling them (and eventually
releasing all or some of them). While the receiver tasks on reaching their
communication points just check whether the message is ready, if ready they just copy

the message from source to their local buffers and continue their execution sequence.

Thus the communication is happening in two steps:
1.Sender task signals the message readiness or availability to the receiver tasks.
2.Receiver tasks on reaching their communication points copy the message to their

local buffers.

Following this every task will have one message buffer whose size will be equal to the
size of the largest message which that task will receive. Similarly every message will

be having a source buffer.

Gourinath Banda 56

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

SENDING
TASK

RECEIVER
TASK1

receive(var_name)

destination

yd

buffer

RECEIVER
TASK2

broadcast (var_name) <D ----------- /

receive (var_name)

/

destination
buffer

source

RECEIVER
TASK3

buffer

S > STEP:1

receive (var_name)

T

destination
buffer

— > STEP 2

Figure.16 Task Communication in steps

4.2.1.1 Task Control Block (TCB) and TCB_Table

Therefore every user task under the Kernel has one Task Control Block (TCB), which
has a field that contains the address of the buffer for that task. Its structure is like this:

TCB[task number X] = { &messageDestinationBufer X }

There is a table of such TCBs implemented as an array of type TCB, and the task
number itself is used to access this TCB for that task. It is named as control block but

practically it is no way concerned for control of the task to which it belongs.

4.2.1.2 Message Control Block (MCB) and MCB_Table

To achieve the content oriented messaging a data structure for messages called Message

Control Block (MCB) is made. Each message has one MCB. It has three fields

specifying: i. What are all the receiver tasks.

ii. Address of the message source, and iii. Length of the message.

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

()]

MCB[message ID] = { Boolean vector receivers for this message,;
Address &message_source_buffer;

Char message _length;

}

All such MCBs for all the messages in the kernel are put together as an MCB_Table,
which is implemented as an array of MCB type.

4.2.1.3 Mapping the messages to the indexes

To access the MCB for a message named variable X we just say MCB[variable X].
This is made possible by mapping all the message names or identifiers to unique
numbers. After such mapping, wherever variable X appears it is replaced with the
number to which it is mapped. Illustration of how this mapping helps in accessing is

shown below.

MCB

variable name | Index[i] -

temperature 0 MCB_0 recelvers

Pressure 1 MCB 1 msg_buffer
msg_length

14 MCB_15

luminescence |15

Figure.17 Accessing the MCB with variable names.

After such mapping (done by preprocessor macro definitions in ‘C’ implementation),

wherever we say like send (pressure), it is equal to send(1) .

4.2.1.4 Messaging semaphores and MsgSCBs

Each and every message is mapped to one event which is implemented as a message
semaphore or Messaging Semaphore Control Block (MsgSCB). All these MsgSCBs are
put under a table MsgSCB_Table implemented as an array of MsgSCB type. Again the
index equivalent of variable is used to access these semaphores. Thus there is a one-to-

one correspondence between the MCB and MsgSCB for the same index.

All these data structures are kernel data structures under communication and tasks
modules, and can be accessed and through primitives provided to achieve the

communication.

Gourinath Banda 58
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

4.2.2 Communication primitives and private functions

There are five primitives under communication part of software bus:
e broadcast(variable name)
e receive(variable name)
e get message source buffer (variable name)
e get message destination_buffer ()

e get message length (variable name)

Now a task sending a message, say it sends temperature will just say
broadcast (remperature). While at the receiver end it just calls receive (temperature).
This is as simple as said and the duty of kernel is finished as far as communication is

concerned. This calling of primitives is illustrated below.

SENDER RECEIVER
Task_2() Task_4()
{
i:;;oadcast(var_X); i.f.(.;ecieve(var_X))
o {
taskExit(); -
} }
taskExit();
}

Figure.18 Illustrating primitive calls from tasks

4.2.2.1 broadcast (variable_name)

The pseudo code for the primitive is-

broadcast (var_name)

{
tasks = MCB [var_name].receivers ; /l get the receiver task IDs
msg_semaphore_number = var_name ; I/ get the associated semaphore
msg_signal release (msg_semaphore number, tasks) ; //notify thatmessageis

/fready or arrived

When the sender invokes this primitive on appropriate message, it does:
1. Fetch the receiver tasks identities from the MCB_Table into fasks in the form of
Boolean vector.
2. Then corresponding semaphore is also fetched.
3. The associated MsgSCB is signaled and also the tasks in that SCB are released.

Thus all the registered receivers are notified that the message has arrived or ready.

4.2.2.2 receive (variable_name)

The pseudo code for this primitive:

receive (var_name)
{
msg_semaphore number = var_ name;
if (msg_test_and reset(msg_semaphore_ number))
{
copy_message(MCB[var_name].source message buffer,
TCB[RT] .destination_message_ buffer,
MCB[var_name] .message_length) ;

Il copy to local buffer

return (true) ;

}

else

{

return (false) ;

Receiver on invoking this primitive call on the message with which it is registered:
1. The associated message semaphore is checked whether this task is signaled
2. Ifsignaled copies the message from source to the destination
3. And returns true when the copying finishes.
4. If the semaphore for the task is not signaled i.e., message not ready it returns

false to the receiver task.

The calls msg signal and release() and msg test and reset() are the exact
equivalents to signal and release() and test and reset(). But the messaging versions
of primitives are private functions acting on messaging semaphores or MsgSCB, while
the latter ones act on synchronization semaphores. The pseudocodes of these primitives
are:

o msg signal _and release()

msg_signal and release (msg_semaphore number, tasks)

{
MsgSCB [msg_semaphore nuber] .FLAGS = MsgSCB[semaphore].FLAGS | tasks ;
ATV = ATV | MsgSCB[msg_semaphore number] .TASKS ;

o msg test_and reset()

msg_test and reset (msg_semaphore number)
{
if (MsgSCB[msg_semaphore number] .FLAGS[RT] = = 1)
Il check whether the semaphore has signaled the running task or not
{
MsgSCB [semaphore] . FLAGS [RT] = 0 ; //clear the bitin FLAGS vector
return (true) ;

}

else

{

return (false) ;

}

It is possible to realize all patterns of asynchronous communication just by configuring
the message control block. The number of tasks under the receiver tasks field defines
the pattern. If only one registered receiver task is there it results in one-to-one
communication, if two or more receivers are there it results in one-to-may
communication, and if all the tasks are registered for a message it results in broadcast
style. Several one-to-one communication to one single task as receiver results in many-

to-one style. Such one/many-to-one combinations results in many-to-many style.

4.2.2.3 get message_source_buffer (variable_name)

This primitive is called to get the source address of the corresponding message address.

It returns the pointer to the buffer. The pseudocode-

get msg source buffer (message)

{

return (MCB[message] . sourceBuffer) ;

}

4.2.2.4 get message_destination_buffer ()

This is called by the user tasks after being notified of the message arrival. It gives the
address of the local buffer for the task that is calling this primitive. It returns a pointer.

Its pseudocode-

get msg destination buffer (void)

{
return (TCB[RT] .msgLocalBuffer) ;

}

4.2.2.5 get message length (variable name)

This is called inside the receive(message) when copy_message() is executed after the
message has been notified. It returns the unsigned character value equal to the size of

the message.

get msg length (message)
{
return (MCB[message].length);

}

4.2.2.6 copy_message(source_address,destination_address,length,)

This called in the receive() primitive to copy message from the source buffer to the

destination buffer. The arguments passed can be seen in the pseudocode-

copy message (source address, destination address, length)
{
while (length--) {
destination[length] = source[length];

}

4.2.3 Illustration of usage of communication primitives to get content
oriented message addressing

The kernel developed is an integrated system. The difference between integrated and
non-integrated systems is that transparent communication (can be over a network or
locally in one node) is supported by integrated systems. Transparent network imply that
all the communication is built into the kernel. This building starts from configuring the
messages, messaging semaphores (MsgSCB), message control block (MCB), task
control block (TCB) and other structures that are related to communication.

4.2.3.1 Configuration details:

1. Mapping messages to serial numbers uniquely so that the messages can be
accessed by names itself. Suppose there are ‘n’ messages in the system. Then the

mapping is as shown in following table (TABLE II).

TABLE 11
Identifying Index
message name
il or variable name
0 variable0 name
1 variablel name
2 variable2 name
15 variablel5 name

2. Configuring MCBs individually corresponding to each message or variable that will
be communicated. The MCBs of all messages are put together as a table (array). As
said earlier, each MCB has three fields- receiver tasks(vector),
messagebufferAddress(pointer), message length(unsigned char). MCB
corresponding to a message is accessed by saying MOCB|variable name].

Variable name will be substituted by the index with which it is mapped (as in step1).

Gourinath Banda 63

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

3. Now each message or variable is mapped to a messaging semaphore MsgSCB. All
MsgSCBs are put in a table (array). So the mapping is just achieved by the same
index of message. Meaning for variable0 name the semaphore will have semaphore

with MsgSCB [variable0 name].

var_name |index MsgSCB[0] \ MCBO

Xy 0 [i] MsgSCBI1] MCBI

Pr 1 7 e

Lm 15 MsqgSCB[15] MCBI15

Figure.19 mapping and connection between variables and MCB, message SCBs.

All configurations are done statically.

4.2.3.2 Using the primitives:

There are two situations for communication:
A. Communication initiated by the Integrated event manager (IEM)
B. Communication between the tasks initiate by the involved tasks.
Case A:
In this case associated event’s (event X) descriptor is indexed by X into the event
descriptor table. This event descriptor is-

Event descriptor_table[X]:

Mode | Type | threshold | Event opcode Semaphore | tasks | Message Next
Counter Index Event
* * Xih Xih OPC_SEND_MSG | semaphore_X | 0x8201 | variableX_name | *

1jofojofofol2fojojofofo]ofofo]t]
1514131211109 8 7 6 5 43 2 1 0

The fields marked with * means its value can be any of the possible value. Threshold
number is Xy, a number between 0 and 256. Message named variableX name is to be
broadcasted to tasks mentioned by tasks field in the event descriptor field . Here tasks

15,9 and 1 are to be signaled about the message.

Gourinath Banda 64
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The semaphore X i.e. MsgSCB[sem X] is used to signal the tasks. Such
MsgSCB[semaphore X] has its fields initialized as:

MsgSCB[variableX name] 15 14 13 12 11 109 8 7 6 5 4 3 2 1 0

flags [0 |0 (O |0 |O 1O {0 O |0 O O |0 10O 0|0 O

released tasks|1 (0 |0 |[O |O [O |1 |0 |O |O |O |O [O (O |1 |O

With message index ‘varX name > MCB is accessed. The MCB[varX name] is-

MCB[variableX] = { 0x8201,
*bufAddressX,
lengthX

On the expiry of such event counter, the integrated event manager calls the primitive

broadcast with appropriate arguments mentioned in the event descriptor:

broadcast (variableX name) ;

Following this call MsgSCBJvariableX name] is signaled to tasks 15,9 and 1 and
eventually tasks(15,9 and 1) mentioned by fasks field are released . Thus message
arrival or ready notification is done. Now step 2 in communication is taken care by the

receiver task. See the pseudocode for one of the receiver tasks, task 9().

Task 9()
{
if (recieve (var_X))
{
union msg destination buffer 9 *tempPtr =
get_message_destination buffer();

local val = temthr—>expected_variable_type;//the stream is got
//as per the particulars of variable datatype or struct type

}
taskExit();

}

The receiver task makes a check whether message has arrived or not by calling
receive() if arrived copies to local buffer. Message is now in the local buffer for the task
as defined in the task control block(TCB). This message is purely in unformatted form
as a string of bytes. By calling get message destination buffer(), the local buffer
address is got, now the byte stream is to be resolved according to the data type

particulars. This is deeper implementation details.

Case B: Tasks communicating directly
The entire configuration process for MCB, MsgSCB, message mapping remains the
same and are initialized according to the message. Notice the pseudocode for sender

task-

void task_7(void)

broadcast (variableX name) ;
taskExit () ;
}

The sender just calls broadcast (variable name) and the message attached to this index
is notified to the receiver tasks as mentioned in the MCB for the message. Say that
task 7 sends message to tasks 15,9 and 1. The step 1 in communication is finished by
this call. Now the receiver tasks are released by some other means, but can also be done
by the sender task explicitly. The receiver tasks 15,9 and 1 on reaching their
communication point does the same action as shown in the pseudocode for task 9

previously.

4.2.4 Merits of this communication in Kernel

4.2.4.1 Very fast, instantaneous and fixed in time
One should remember the two steps in communication (section 4.2.1). The kernel

spends very few machine cycles in the associated notification as it involves just Boolean
operations like OR, AND etc. involving the Boolean vectors of one semaphore. This
takes constant and fixed time irrespective of the bits being set or reset. In the second

step a considerable amount of time (directly proportional to the size of the message) is

Gourinath Banda 66

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

spent in the second step. However it is to be understood that this time is spent at
individual points in time when the corresponding receiver task is running. Thus time for
communication is very small or instantaneous irrespective of how many tasks are
communicating. In several existing RT-kernels the message is copied to all the task’s
message queues at the instant of sending, this results in consuming lot of time and is
varies depending on number of tasks to which the message has to be sent. Further
sending a message to task, which is not the running one, makes the running task to be

delayed very much.

4.2.4.2 No message queues

Further the concept of allocating one local message buffer to each task involved in
communication and one buffer each for source messages and the design implementation
resulted in no need for message queues. This resulted in reducing the memory overhead

and time overhead associated with message queue processing.

4.2.4.3 No risk of message loss

The tasks are basic tasks and at any instance it can consume only one message and once
the message is consumed the buffer can be rewritten and will be rewritten only if the
task needs one more message, but this will happen after previous message is consumed.
Further the source message has its own buffer and will be updated by the appropriate

tasks as and when necessary.

4.2.4.4 Highly compilable

A task is allocated a message buffer if and only if it requires at the static configuration
stage of the application tasks with the kernel. This results in allocation of memory to

tasks as per the individual tasks requirement.

4.2.4.5 Transparent communication

Due to the implicit addressing application programmers are freed from the trouble of
specifying the receiver tasks, buffer addresses, message length. This results in
transparent communication, because all the communication is built into the kernel by

configuring the communication part in the software bus module.

E End of Chapter4 g o

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 5. Compound tasks and Secondary-level
scheduling algorithms

Task management is done following the fixed priority scheduling policy, where each
task is having a unique base priority. In the kernel a task can take priority from O till 15.
The task priority is a whole number not a floating-point number. But in several control
applications there is a need for several tasks having same priority. Such tasks need to be
executed in a fixed sequence, for example in FIFO basis. In some cases the tasks need
to be scheduled following static cyclic scheduling i.e., say there are a set of hard real-

time tasks that are to be released at a certain frequency periodically.

5.1 Compound task and subtasks

To meet this kind of special requirement, under the kernel there is a task type called
compound task. See the figure (Fig.6- Chapter 3) there are two types of user tasks
under the task manager. A simple task is a basic task with linear structure as shown in
figure (Fig.7- chapter 3). By saying linear structure it means there is no change in
execution sequence and all significant jobs are done by the statements or subroutines

but not calling other tasks.

Compound task is a segregation of several simple basic tasks, which are executed as
subroutines (with no parameters) following a rule. Further there is a scheduling
algorithm according to which these simple tasks execution and execution sequence is
carried out. The contained simple tasks under the compound task are called subtasks. In
this context compound task is called as parent or mother task of subtasks. Again

compound task is also a basic task i.e., it can never be blocked.

All the subtasks are executed at the priority of the corresponding mother task. It should
be kept in mind that the priorities (unique) are allocated to the tasks under task manager
with no discrimination of compound or simple. Therefore there are totally 16 tasks
under the task manager of which some are simple tasks while the remaining are
compound tasks. Further the task manager treats both tasks uniformly. It is the body of

compound task that takes care of scheduling subtasks.

Gourinath Banda 68

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

5.2 Subtask scheduling algorithms

Out of all the subtasks under a compound task, one or more (can also be all or none) are
run each time the compound task is invoked. The subtasks and sequence of subtask
execution may also change at each invocation of compound task. These are all done
according to the local scheduling algorithm followed within the compound task. This
algorithm is referred to as secondary-level scheduling algorithm, thus the compound

tasks act as secondary level schedulers as illustrated in the Fig 20.

CTx]

SubTaskO()

SubTask1()
Compound task with SubTask2()
base priority X

SubTask3()

having N sub-tasks

SECONDARY LEVEL SCHEDULER
ALGORITHM

|

SubTaskN-1()

Figure.20 Compound task as secondary-level scheduler with subtasks

The three types of secondary-level scheduling algorithms supported under this kernel
are:

e FIFO style
e Static-cyclic scheduling

e Arbitrary invocation sequence following state-logic controller algorithm

5.2.1 FIFO style

In this type of compound task, all the subtasks are invoked and the sequence of
execution is fixed, this sequence is built in a precedence-constrained manner. Meaning
that subtasks are placed in the sequence according to their precedence and significance.
If a subtask subTask X() is of high importance it is positioned at the top in sequence.
Thus subtasks are invoked in the order of their precedence. A compound task following
FIFO style subtask execution has following pseudocode:

Compound task X ()

{
subtask 1 (); /lcall subtask_1 as subroutine with no parameters
subtask 2 (); /lcall subtask_2 as subroutine with no parameters
subtask 3 (); /lcall subtask_3 as subroutine with no parameters
subtask_4 (); /lcall subtask_4 as subroutine with no parameters

subtask N(); [call subtask_N as subroutine with no parameters
taskExit() ;
}

5.2.2 Static Cyclic Scheduling using the Boolean Vector Semaphores

This compound task employs static cyclic scheduling algorithm to execute the subtask.
In such algorithm the subtasks are periodic having a fixed period for release and they
are to be released at their respective frequency. When two or more tasks are released at

the same time the subtasks are executed in a precedence-constrained manner.

5.2.2.1 Static-cyclic scheduling and methods to develop such schedule

In many hard real-time systems (can also be in soft real-time systems) there are periodic
tasks that are to be run and hence released at a predefined individual period or
frequency. Based on this knowledge a schedule is developed statically which will
schedule all the cyclic tasks.

5.2.2.1.1 Developing static-cyclic schedule
The method to develop a static-cyclic schedule is very simple. There are two

approaches:
e offline: table-driven implementation

e online: tick-driven implementation

A) Off-line approach:

As all the tasks are released periodically with certain frequency there are many chances
that the pattern of release will be repeated after certain time. The length of such cycle
can be calculated by mathematical formulae. Such cycle which is repeated in the
schedule is called major cycle. While the tasks are released only at points that
correspond to the common unit or resolution of all tasks periods. This point also has

some time period of repetition, this cycle is called minor cycle.

In making an off-line static schedule there are certain assumptions, which are:
1. For each static-cyclic schedule there is a periodic task set. All tasks are periodic.
{t1, T2, T3...... ™}
2. Each periodic task has a fixed period(T), execution time(C) and deadline(D).
7,:T,C,D, =T,
To: Tp, Cy, DT

w: TN, Cn, Dn=Tn

A static cyclic schedule is constructed for these tasks, and its major cycle schedule only
will be shown here. The major cycle has a period Tp,jand minor cycle Tpin. Each major
cycle has m minor cycles i.e., m = Tiaj / Tmin . While Tiej and Trin calculated as:

Tmaj = greatest common divisor (T; Th....coceee TN)

Tmin=least common multiple (T; Ts...ccoenneeeene TN)

Assumption 3: Sum of all the execution periods for all the tasks is less than the minor
cycle period i.e., X C; <= Tyy;,. This implies non-preemptive scheduling

of periodic tasks

Table-driven implementation of off-line static scheduling:
Now see the execution patter of all the tasks in Fig 21.In the figure only three tasks are
shown. This is pattern pertaining to the major cycle, which when repeated results in a

complete schedule. Timing events

Minor cycle

0o W 20 90 100 (110 120

m ‘% | ‘ Y ¢ Y ‘ Y ‘
S S T B B I T

T
vV v v v v
: task release
Task2 B N M x Y
: []: task execution

v v v v

Task 3 | JH H]

T3 o
€ >

i

Figuré.2l Static cyclic scheduling pattern complete major cycle

Gourinath Banda 7

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Let us take a static schedule for only three cyclic tasks being task 1, task 2 and task 3
with periods 20, 30 and 40 time units respectively. While priorities: p(task 1) >
p(task 2) > p(task 3).Accordingly we get the period for major cycle T, = 120 and

minor cycle Tpin= 10 units. Thus we get m = T/ Tinin = 12.

From the Fig20, it is easy to see that the schedule can be represented by a 12 X 3 matrix
called ‘SCHEDULE’ having Boolean flags f 'j as elements, where i represents the row

number (minor cycle number) and j represents the column number (task number). If the
task X has to be released during a minor cycle Y, the flag fYX should be set. So such a

schedule can be represented as a table (implemented as matrix) as shown in Table I1.

TABLE 1II
task
mino Task_1 | Task_2 | Task_3
cycle
0 1 1 1
1 0 0 0
2 1 0 0
3 0 1 0
4 1 0 1
5 0 0 0
6 1 1 0
7 0 0 0
8 1 0 1
9 0 1 0
10 1 0 0
11 0 0 0
12 1 1 1

This can further be generalized to develop any schedule involving ‘n’ tasks and ‘m’
minor cycles for one major cycle. Where we get a m X n SCHEDULE matrix i.e., a

matrix of dimensions (Tmaj / Tmin) X number of tasks . Row i of this matrix contains
flags f T ST f', which are initialized to 1 or 0, if 1 means the task to which
the flag belongs is executable while 0 means not executable.

Gourinath Banda 72

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

The schedule is run by the scheduler implemented in an interrupt service routine (ISR),
which is periodically activated by timer interrupts arriving at interval equal to that of
minor cycle Ty, period. This offline schedule development is called as table-driven
implementation.

Such a scheduler looks like-

Static_cyclic_scheduler is:
{

restart timer (Tmin) ;
Minitially i =0
get SCHEDULE[i]; //getthe row from schedule matrix corresponding to i -minor cycle
for(j =1, j<= n; j++)
{

if (£ *; = 1) execute_task(t;) ;

}

i = (i+1l) mod m; [l ion reachingvale m should start from zero again
exit; IIRTI
}

B) On-line schedule development:

The table driven implementation has a very big shortcoming, i.e. whenever the task with
periods happen to be prime numbers it results in a very big table. Also if there are many
tasks it also results in increase of table size. This is over come by developing the
schedule on-line at run-time i.e. generating flags f’ j by employing timers (ST). Each
task is allocated a scaling timer (STx) whose period of overflow is equal to the task

period. That is-

T; = ki Tyin // this interval measured by ST,
T; = ky Ty // this interval measured by ST

Ty = ky Toin // this interval measured by ST,

The algorithm which develops the schedule and drives the schedule is as following:

Static cyclic scheduler is:

{

restart timer (Tpin)

for (j =1; j<= n; Jj++)
{

decrement ST,

Gourinath Banda 73
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

if (ST;= 0)
{
ST; = k; ; llreload the scaling timer

£, =1; [l settheflag indicating 7jis to be run

for (j = 1;j <= n; j++) [l thisis the driver routine
{
if(f; = 1) execute_task(1y);
}
exit; IIRTI
}

In the first for loop all the scaling timers are updated and if the timers have expired they
are reloaded and the flag corresponding to that task in that minor cycle is set. If the
timers haven’t expired the flags are reset. When all the flags in a minor cycle are
updated, the schedule of row is ready. This for loop is finished, then the driver for loop
executes the schedule made in the previous step. Thus the schedule is made just before

being consumed. This method is called interval-driven implementation.

5.2.2.2 Implementing Static-cyclic scheduler by Boolean vector semaphores

The algorithm is not implemented explicitly in the compound task but is achieved using
the concept of synchronization using Boolean vector semaphores. All the subtasks
under a compound task are mapped on one-to-one basis to different semaphores, whose
Semaphore Control Blocks have the fasks initialized with a Boolean vector with bit

corresponding to the mother task is set. The compound task pseudocode is-

task X ()
{

if (test_and reset (semaphorel)) subTaskl();
Il subtaskl is called as subroutine - subT askl has high precedence
if (test_and reset (semaphore2)) subTask2();

Il subtask? is called as subroutine

if (test_and reset (semaphoreN)) subTaskN();

Il subtaskil is called as subroutine- subT askl has less precedence
taskExit() ;

}

1. The mapping of semaphores with subtasks is implemented by the if conditions.

2. Then corresponding to each subtask an event is defined whose threshold occurrence
results in the same time period as the cyclic subtask period.

3. These events are mapped to the semaphores with which the corresponding subtasks
interact.

4. Setting the semaphore field under the event descriptor with semaphore number this
mapping is achieved.

5. The tasks Boolean vector field under each event descriptor is initialized with a
value that corresponds to the mother task under which are all the subtasks.

6. Under the semaphore control block of each semaphore the tasks vector field is
given a value which has one set bit corresponding to the mother task.

7. In all these event descriptors the opcode field is defined as OPC_SIGNAL.

8. Thus on the expiry of such event counters the primitive signal _and release() is
invoked separately, by passing semaphore and tasks as arguments.

9. Following this call, the tasks mentioned by tasks (compound task) is signaled and
tasks (compound task) mentioned in the fasks of semaphores is released.

10. Correspondingly the subTasks are signaled through the semaphores.

11. Based on the priority given to the mother task, when it is scheduled to run carries
its execution as shown in its pseudo code. It checks whether a semaphore is

signaled and executes corresponding subtask.

Thus the static cyclic scheduling is realized by means of Boolean vector semaphores.

Consider the same example under 5.2.2.1.1 A, but the tasks are now subtasks put under
a compound task whose ID number is say 7. subTaskI(), subTask2() and subTask3()
with precedence of: subTaskl() > subTask2() > subTask3().The cyclic periods are
20,30 and 40 seconds. We define three events whose threshold occurrence results in the
period of the cyclic subTasks. Let the events be event 1, event 2 and event 3. All the
events have the same opcode and it is OPC_SIGNAL. The semaphore field under each
event holds three different semaphores whose indices are semaphorel, semaphore2 and
semaphore3. All the events are registered under the corresponding resolution tables, in
this example all are of same resolution i.e., seconds. The semaphore control blocks

SCBs of the mentioned semaphores are initialized as following.

Gourinath Banda 75

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

SCB[semaphorel] : It is initialized such that when its signaled and released the task

task 7() is released. The SCB [semaphore3] has the fields as following:

SCB[semaphorel] 15 14 13 12 11 109 8 7 6 5 4 3 2 1 0

flags [0 |0 (O |0 |0 {O {0 (0 |0 O O |0 0O |0 |0 O

released tasks |0 |0 |0 [O (O |O |{O |O |1 [O [O |O |O |O |O |O

The remaining two semaphores are also initialized similarly with the tasks[7] bit set.

The three events in its event descriptor have tasks field. This field for all the events has
same Boolean vector value with bit 7 set. Now when such events expire i.e., at periods
20,30 and 40 seconds, the primitive signal and release() is invoked with semaphores
1,2,3 and fasks argument with bit 7 set. Following this primitive execution the task 7
(compound task) is signaled and released. The mother task when scheduled to run
checks the semaphores then executes the subtasks by invoking them as subroutines. The

pseudo code for such compound task is-

task_7 ()
{
if (test_and reset (semaphorel)) subTaskl();
Il subtask3 is called as subroutine
if (test_and reset (semaphore2)) subTask2();
Il subtask? is called as subroutine
if (test_and reset (semaphore3)) subTask3();
Il subtaski is called as subroutine
taskExit();
}

Notice the order of positioning the calls to the subtasks this ordering is done according
to the precedence. As subTaskl has high precedence it is the first in the sequence, and

the sequence continues with decreasing precedence subTasks.

Irrespective of the number of subtasks the concept remains the same.

5.2.3 Execution of a arbitrary sequence of subtasks

There are applications where there is a need for some extended tasks. Extended tasks
are the tasks that can be blocked waiting on some event. In the absence of extended
tasks such type of behaviour can be emulated by the compound tasks, which use the
State Logic controller type algorithm to schedule the subtasks [1]. But to use this, the
task should be split into appropriate subtasks and a state machine specifying the
execution sequence for these subtasks should be developed. Consider a state machine
whose state transition graph is given below, which specifies the execution sequence of
subtasks influenced by the events. This is a typical example of event driven state

machine (Moore machine).

Figure.22 State transition graph of a Moore machine.

Here sT,sT,,sT5 ... sTs stand for the subtasks 1,2,3... 5. While S,,S,...S7 stand for the
semaphores.Now following the steps[1] of developing the BDD for a MooreMachine
represented by the above graph, we get the BDD_Table.While the control memory table

consists of the subtasks that are mapped with the state correspondingly. We thus develop

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

the next state mappings for ap, a;... as and make BDD for each next state mapping,
number the nodes and develop the needed BDD table. The structure of BDD Table and

Control Memory Table are shown on the next page.

All the transitions are effected by the events that are notified by means of semaphores in
the kernel. Every event is mapped one-to-one with the semaphores. Initially the
machine will be in state ap . When activated for the first time if eventl i.e. semaphorel
(S1) is signaled the machine exits the state a; and enters a;. Thus executing the
subTaskl1() i.e. sT; . After the execution of sT,() it waits for event3 or event2, which
are mutually exclusive events notified by the semaphores S3 and S2. This execution
sequence continues only if the appropriate events occur. Meaning if the machine is in
state a, and if the events i.e. S1, S2, S3, S5, S6, S7, S8 are signaled the machine will not
respond and remains in the same state. But if event4 i.e. S4 is signaled it moves to next
state i.e. as. It can be clearly seen that the machine is waiting at the states for the
enabling event(s) to be signaled. This concept when imported into a compound task we
achieve the extended task behaviour implicitly. The method will be described with an
example but before going into details it is important to know the requirements in
developing such task.
The requirements are:

1. A task should to be divided into portions and such portions should be

encapsulated in separate subtasks.

2. An event-driven state machine should be developed that defines the subtask

execution sequence, where each state is mapped to one subtask.

3. The events that enable different transitions from the same state must be mutually
exclusive thus meeting the consistency properties. This means if S, Sy ...S, are

enabling events for different transitions from one same state, at any instant only

one of these should be signaled i.e. if S; =1 then S; =0

Based on the state machine designed the state transition graph is developed following
the standard procedures [1]. Then the graph is decomposed into binary decision

diagrams as per rules proceeding in steps as following:

STEP 1: Identify the next state mappings of each state in the state transition graph.

Gourinath Banda /8

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

[llustration: For the state transition graph shown in Fig 22 we get next state mappings:
F(ap) = ai(S))

F(a;)) = ax(Sy) , a3(S3)

F(a;) = a3(S4)

F(a3) = ay(Ss) , a4(Se)

F(as) = ai(Sg), as(S7)

F(as) = ao(-)

STEP 2: Develop the binary decision diagram for each state, following the next state
mapping for that state.

[1lustration:

i. F(ag = ai(Sy)

ao/ -

NULL |1 a/sT, | 2

ii. F(ay)= axS2), as(S3)

a]

NULL |g as/sT; | ©

Gourinath Banda 79

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

iii. F(az) = a3(Sy

iv. F(a3) = ay(Ss)

NULL

NULL |9

» a4(Ss)

ot

13

v. F(ay) = a;(Ss), as(S7)

NULL

a3

a4/ ST4

a4

a5/sT5

33/ST3 10

az/ STz

14

15

20

vi.

F(as) = ao(-)

as

ao/- | 21

STEP 3: Develop a Binary decision diagram table for the entire state machine.

1.

Number continuously all the nodes each next state mapping’s binary decision
diagrams (BDD) starting with zero. See the colored numbers against each node
in the BDDs under step 2.

Now construct a table as shown in table (TABLE 1V).

First fill the Node number (Node no.) column starting from zero till the last
node’s number.

Fill the Node type column with either S or a if the node is semaphore or a state
respectively.

See the successors for each semaphore node fill them accordingly. When
semaphore is not signaled the resulting node should be written under successor

zero, if signaled under successorl.

TABLE IV: BDD Table

Node No. N_type N_index successor 0 successor 1 BLOCK

0 S 1 NULL 2

1 : : : § F(ay)
2 a 1

3 S 2 4 7

4 S 3 NULL 6

5 - - - - F(ay)
6 a 3 - -

7 a 2 - -

8 S 4 NULL 10

9 - - - - F(ay
10 a 3 - -

11 S 5 12 15

12 S 6 NULL 14

13 - - = = F(a3)
14 a 4 - -

15 a 2 - -

16 S 8 17 20

17 S 7 NULL 19

I8 : : : : F(a)
19 a 5 - -
20 a 1 - -
21 a 0 - - F(as)

Gourinath Banda 81

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

STEP 4: Use the standard algorithm meant for event driven state logic controllers as the

compound task body. Such a compound task pseudocode is as following-

task X()
{
do
{
state @7
index BDD Table[i] .N_index //initially i =0
//determine current state

switch (BDD_Table[i] .N_type)
{
case ‘S’ :
if (test_and reset(arbSCB [index]))
{
i = BDD_Table[i]. Successorl;
}

else if (BDD Table[i]. Successor0 = = NULL)
{
break do while loop();
}
else
{
i = BDD_Table[i]. Successor0;
}
break;
case ‘a’
if (control memory[index] .subtask != NULL)
{

start (control memory[index] .subtask) ;
i = BDD _Table[i] .successorl;
}
break; // switch end
}
} while(not(state = =1 &&
control memory[index].imm transition!=1)
taskExit()
}

This alogirthm operates on the BDD Table developed and invokes the subtasks which

are placed under the control memory table. This control memory table is an array of

structure which has two fields.
control_memory [] = { address_of the subtask;

immediate transition;

}

Each element in control memory table is uniquely mapped to one state, thus there are

same number of elements in the control memory table as the number of states.

Depending on the signaled semaphore if it signals a relevant event corresponding to the
state in which the machine is, the transition is done and the mapped control memory is
executed by the compound task. If the subtask address field is not empty, the subtask
pointed to by the address field is invoked. The control memory table looks like shown
in Fig.23(a). Control memory table for the discussed example is in Fig 23(b).
Following this the compound task exits. In the next invocation the task remembers its
previous state and when receives relevant event then when its running the

corresponding subtask is invoked through its address in the control memory table.

control_memory_table

a) b)
Subtask imm_transition
subtask1Address . subtask imm_transition
subtask2 Address NULL
subtask3Address subtask1Address
subtask4Address subtask2 Address
----------- - subtask3Address
----------- - subtask4 Address -
subtaskNAddress .. SublaskoAddress =

Figure.23 (a) Structure of Control memory table (b) control_memory_table for the example

If the transition from a state is immediate then the field imm transiton of
control_memory _table for that state is set to 1.

Who will signal the semaphores?

Semaphores are signaled by the application tasks or IEM and needs to be configured in
the context of this arbitrary subtask execution carried out by the compound task. The

implementation framework is incorporated into HARTEX,,. This is provided to support
for such compound tasks, which may be used in future.

g End of Chapter5 g

Gourinath Banda 83
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 6. Event Management

The purpose of the real-time system is to recognize various timing, external and internal
events and to generate relevant reactions by executing the corresponding application
software (firmware) subroutines (tasks) in a timely and predictable manner. It is the
duty of event manager to identify the occurring events and accordingly indicate task
manager or/and software what kind of operation is to be taken when the event counter

for one or more event(s) expire.

In the microcontroller all the necessary timing is provided by the timer interrupts
provided by the timer hardware module (real time clock). In several existing kernels
tasks are given a time stamp (the instant in time at which the task should be released). A
software clock is setup in the appropriate tick interrupt for this purpose. When the time
in this clock matches the time stamp(s), corresponding task(s) are released. This is how
the static scheduling associated with timing is achieved. While the dynamic scheduling
is made possible by setting up counters around the related interrupts, when this
threshold is reached action is taken. This type of kernels has different modules handling
the tick interrupts and external events called time manager and event manager

respectively.

In present kernel, design and implementation of Event Manager is made simple and
unified, by treating all the interrupts (tick interrupts and all hardware interrupt etc.) in
the system as events. Thus we have one subsystem called Integrated Event Manager that
provides the integrated time and event management. Further each individual significant
event is given a structure called Event Descriptor which contains all the particulars
about the action to be taken when the event counter expires. Event counter is set equal

to the associated threshold.

What is threshold value?

In embedded systems all events are conveyed by the interrupt requests (IRQs). But an
operation is to be done when this event has occurred for some number of times.
Sometimes this number can be one or some other value. This value of repetition number
is called threshold. Now we see how time management is achieved by events-Say we

need to release a task task X() every one second. In the microcontroller we initialize

Gourinath Banda 84

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

the hardware so that a tick interrupt comes every 10 mill-seconds, say it as an event. To
get one second, this event must occur 100 times, so by defining a threshold value for
this event as 100 and defining the action as release of fask X, the needed time

management is achieved by the event management concept.

6.1 Event Descriptor

There is an event descriptor for each significant event. By significant event we mean
that it is having some significant operation associated with its happening. This operation
can be:
e Synchronize tasks by invoking signal and_release() under synchronization part
of software bus
e Send message to tasks by invoking broadcast() under communication part of
software bus.
e Release tasks by invoking release() under task manager
e Enable the next event by invoking enableNext() under the Integrated event
manager.
And to each primitive call we need to feed appropriate arguments, and these are also

specified with the event descriptor. The event descriptor has 9 fields as shown below-

Event Descrintor:

mode | type | threshold | Event counter | opcode | semaphore | tasks | messageindex | nextEvent

Each field meaning and other details are:

e mode : This specifies the status of event either enable or disabled.
possible values: ENABLE / DISABLE
where ENABLE = 1, DISABLE =0

e type : This specifies the type of event whether it’s a free running or on-off type.
possible values: FREE_RUNNING / ONE_OFF
where FREE_RUNNING = 2, ONE_OFF =1

e threshold : This indicates the threshold for the event
possible values: 0 to 255

Gourinath Banda 85
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

event counter: This is the decrement counter for the event that decrements on
each occurrence of the event. On every counter expiry (counter reaching 0) it is
reloaded with threshold.

possible values: 0 to 255

opcode : This specifies what are the actions to be done on expiry of event
counter. Based on this value corresponding subsystem primitives are invoked.
possible values: OPC_SIGNAL, OPC_SEND_MSG,
OPC_RELEASE, OPC_ENABLE_EVENT.

Where OPC_SIGNAL = 0x01
OPC_SEND_MSG = 0x02
OPC_RELEASE = 0x04

OPC_ENABLE_EVENT= 0x08
Further:
OPC_SIGNAL- indicates the signal and_release() invocation
OPC_SEND_MSG- indicates the broadcast() invocation
OPC_RELEASE - indicates the release() invocation
OPC_ENABLE_EVENT- indicates the enableNext() invocation.

NOTE: The opcode can take one or more values simultaneously because notice
the possible values and their actual values. By just OR-ing between two different

values you get one new value, which can be fed to the opcode field for an event.

semaphore: This specifies the semaphores associated with the synchronization

operation if the opcode has OPC_SIGNAL with it.

tasks: This specifies the tasks to be released if opcode contains

OPC RELEASE.

message index: this specifies the source message index that is to be broadcasted

if opcode contains OPC_SEND MSG.

next event: this specifies the next event index when the event is of ONE_OFF

type and opcode for the event contains OPC_ENABLE NEXT.

6.2 Time and event management in Integrated Event
Management

6.2.1 Basic Event Processing

6.2.1.1 Basic Timing Event Processing

A specific amount of time can be measured in multiples of tick interrupt (events) that
occurs with a fixed period. This tick interrupt corresponds to the fine granularity of the
time in the system. In the present kernel basic tick interrupt has a time period of 10
milliseconds. Consider bigger periods which are in hours, minutes etc then measuring
time in multiples of 10 milliseconds is very difficult and takes huge memory for the
threshold and event counter fields in the event descriptor. To overcome this problem, in

the tick interrupt there are four flags corresponding to resolutions:

e Basic time unit i.e., 10 milliseconds in present case.
e 1second
e 1 minute

e 1 hour

These flags are set whenever the corresponding time has elapsed. Four different types
activities are carried out whenever these flags are set, that is the essence of event
management. After finishing these activities the flags are cleared. Again the flags are set
as the time elapses the corresponding activity is executed and then the flag is cleared.

This is repeated continuously which accounts for time management.

This portion of timing event management is called Basic Timing Event Processing and
is done in the interrupt service routine of the tick interrupt in Hardware Adaptation
Layer subsystem. Because of this BTEP, resolutions of second, minute, and hour are

made available.

6.2.1.2 Basic external event processing

The external events are conveyed by the external interrupt requests (IRQ), while the
corresponding interrupt service routine (ISR) carries out the basic interrupt processing
specific to the type of interrupt then it invokes the Integrated Event Manager (IEM)

through the primitives on the associated event descriptor.

Gourinath Banda 87

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

6.2.2 Essential Event Management

The actual event management is performed by Integrated Event Manager (IEM), which
is invoked by HAL (from the tick ISR) through the primitives provided in IEM.
Whatever be the type of event, the action to be taken should be same (from the
operational perspective of the Integrated Event Manager) and to make such
homogeneity in the implementation of the Integrated Event Manager, the following
solution is proposed. It consists of four tables of events, where each table contains

events of one resolution

Following this solution we have four tables for the events that occur periodically:
1. 10mS event table
2. sec _event table
3. min_event table

4. hr event table

Each table holds the indexes of all those events whose granularity is same i.e.,
10ms_event_table has the indexes of the events under the Event Descriptor table whose
granularity is 10 milliseconds. Sec event table holds indexes of events whose
granularity is in seconds. These index tables are implemented as an array of type

unsigned char.

1.10mS_event table 2.sec _event table 3. min_event table 4.hr_event table

event id event id event id event id
3) ©) ©) ©)
4 7 2 -
5
8

[1]
index to the
Event Descriptor table

Gourinath Banda 38

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

6.2.3 Event Descriptor Table (event_descriptor_table)

All the events are initialized and put together under a table called Event Descriptor
Table. This table is implemented as an array of Event Descriptor type(mentioned under
section 6.1) . The kernel is a static one that is all the tasks are known and the associated
activities are all configured appropriately and similarly all the events are initialized
filling in the appropriate fields with appropriate relevant values as per the application
requirements. The Event Descriptor table looks as following-

[1] index fetched from individual Table V

resolution tables
Mode | Type | Threshold | Event counter | Opcode | Semaphores | Tasks | Messagelndex | Next Event

MAX] ...

All the fields are filled relevantly, and the events corresponding to each granularity are
placed under the corresponding Index Tables. The event descriptor for event ‘X’ is

accessed by saying event_descriptor_table[X].

6.3 Implementing integrated time and external event management

TIME MANAGEMENT: In the tick interrupt (occurring at the least resolution wanted)

the basic timing event processing is done. The Basic Timing Event Processing involves

Gourinath Banda 89
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

the raising of four flags(mSec,sec,min,hr) , which correspond to the time unit of

duration 10 milliseconds , 1 second, 1 minute and 1 hour respectively.

The flags are raised only when that much amount of time corresponding to the flag has
lapsed. After updating the flags accordingly in each tick interrupt, the event manager is
invoked through the primitives with the events in the tables corresponding to the

resolution of the flags that are set.

6.3.1 Basic event processing implementation

6.3.1.1 Basic timing event processing implementation

The hardware is initialized so that we get a tick interrupt every 10 milliseconds. The

pseudo code is for the tick ISR:

Tick ISR () /loccurring every10 milliseconds
{

raise (msec_flag) ;
msec++; [linitially msec= 0

if (msec = = 100)
{
raise sec_flag ;
sec++;
msec = 0 ; [l resetthe msec counter to zero
}

if (sec = = 60)
{
raise min_flag ;
min++;
sec = 0 ; [lresetthe sec counter to zero
}

if (min = = 60)
{

raise hour flag ;
min = 0 ; //resetthe min counter to zero;
}

Il event manager invocation on different tables

if (msec_flag is true) sweep_ table (1lOms_event table) ;
if (sec_flag is true) sweep table (sec_event_ table) ;

if (min_flag is true) sweep_ table (min_event_table) ;

if (hour_flag is true) sweep table (hr_event_table) ;

clear _all timing flags;

6.3.1.2 Basic external event processing implementation

All the events are mapped on one to one basis with the external interrupts (IRQs). The
correspondent basic event processing is achieved with the interrupt service
routines(ZSRs). In the ISR:

1. The interrupt and hardware specific servicing is done .

2. Then the Integrated Event Manager (IEM) is invoked by calling

eventManager(event _descriptor) primitive.

The pseudocode of an ISR for an external event ‘X’ is:

ISR External Event X ()

; Il'hardware and interrupt specific interrupt processing

eventManager (event descriptor_ table[X]) ;
//invoke IEM by passing the event descriptor
//registered for this interrupt

6.3.2 Integrated event management primitives

To access the Event Descriptors and interpret them the IEM provides following
primitives:

e sweepTable(IndexTable, tableLength)

e cventManager(event descriptor)

e cnable(event descriptor)

e disable(event_descriptor)

To be specific all the parameters are passed as pointers or by address. This avoids the
time and memory overhead involved in copying the big data structures.

6.3.2.1 sweepTable(IndexTable, tableLength) primitive

The pseudo code for this call is:

sweepl able (IndexT able , tablel ength)

for(i=0; i< tablel ength; i++)
{
eventll anager(event_descriptor_table [IndexT able[i] |) ; // invoke eventll anager on each event
Il whose index is in the IndexT able

This primitive is invoked by BTEP in HAL by passing table and length of table as
arguments. It inturn invokes the eventManager on each event descriptor whose index is

in the IndexTable.

Ilustration:

If seconds event table is passed to this sweepTable(), it calls eventManager () primitive
on each Event Descriptor that is registered under the IndexTable: seconds event table.
These indexes under the index table correspond to the respective Event Descriptor in the
Event Descriptor table mentioned. What the eventManager does and its operation are

explained under next section.

6.3.2.2 eventManager (event_descriptor) primitive

This primitive brings the operation of Integrated Event Manager. Its here the events are
processed individually by processing their Event Descriptors in Event Descriptor table,
and all the other modules- task manager, synchronization, communication bus and tasks
are put into action as per the opcode mentioned for that event description. The

pseudocode for the primitive:

eventManager (event descriptor)
{
if (event_descriptor.mode = = ENABLE) Il enabled events only
{
(event descriptor.event counter)-- ; //eventcounteris decremented

if (event descriptor.event counter = = 0)
{
if (event descriptor.type = = FREE_ RUNNING)
Il'if eventis free running type
{
event descriptor.event_counter =
event descriptor. threshold ;

Il reload the event counter with the threshold value
}

else if (event descriptor.type = = ONE_QFF)
Il'if event is one-off type
{
disable (event descriptor) ; //disable the currentevent
}

executeOpcode (event_descriptor.opcode)

}

Execution sequence in the primitive:

1. The event is checked for its mode. If mode is enabled then goto2 else exit.
The event counter is decremented by one.

If the event counter for that event has expired (become zero) goto4 else exit
The event type is checked, if FREE RUNNING type goto5 else gotob
Event counter is reloaded with the threshold for that event.

If event is of ONE_OFF type goto7 else exit.

Disable the current event by calling disable(event descriptor) primitive.

® NS »n A wDN

Exit

The private subroutine that is accessed from this primitive is:

e executeOpcode(event descriptor)

6.3.2.2.1 executeOpcode (event_descriptor) — private subroutine

This subroutine decodes the opcode with each event descriptor on which it is called.
And according to the opcode value the related primitives under different modules are

invoked by passing appropriate arguments.

The execution sequence is very simple:
1. If opcode on the event is OPC _SIGNAL it calls signal and release() under
synchronization part of software bus module. The values under the fields

Semaphore and Tasks are passed as arguments to the primitive call.

2. If opcode contains OPC _SEND MSG it calls the broadcast() primitive
invoking the communication part of software bus. The value under the Message

Index field of the event descriptor is passed as argument to the call.
3. If opcode has OPC_ENABLE EVENT value, enableNext() is called.

4. If opcode has OPC_RELEASE value the release() primitive is called which
takes the value under the tasks field as argument thus releasing the tasks

mentioned by this tasks field.

One should keep in mind that the opcode may take a Boolean vector value with one or
more bits set (as said under section). So on the event counter expiry one or more actions

can be taken simultaneously.

Gourinath Banda 93

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Its pseudocode is:

executeOpcode (event descriptor)

{
if (event_descriptor.OPC & OPC_SIGNAL) Il synchronization

{

signal and_ release (event_ descriptor.semaphore,
event descriptor.tasks);

}

if (event descriptor.OPC & OPC_SEND_ MSG) Il communication
{

broadcast (event_descriptor.message) ;

}

if (event_descriptor.OPC & OPC_ENABLE EVENT)
Il enable next eventif the eventis 0NE _0 FF type
{

enableNext (event_descriptor) ;

}

if (event descriptor.OPC & OPC_RELEASE) Il task management
{

release (event_descriptor. tasks) ;

}

The subroutine executeOpcode is invoked by passing the event descriptor as pointer, so
all the accessing of fields also follows the pointer type access. But in primitive this is
not mentioned. Thus it is as simple as this to implement the integrated Event and

Timing Management.

There is one more private subroutine invoked in the executeOpcode() routine:

e enableNext (event _descriptor)

6.3.2.2.2 enableNext(event descriptor) private subroutine

When the event is of ONE_OFF type on the expiry of the event counter, that event
which is next to be started has to be enabled. This is the subroutine that enables the
event whose index is mentioned under the field of ‘nextEvent’ in the event descriptor
for that event. It just switches the mode of the event mentioned under next event from

DISABLE to ENABLE. Its pseudocode is:

enableNext (event_descriptor)

{

event descriptor_ table[event descriptor.nextEvent] .mode = ENABLE;

}

6.3.2.3 enable(EventDescriptor) primitive
This primitive is used to disable an event. It just sets the mode of the passed

EventDescriptor to ENABLE. Its pseudocode is:

enable (event descriptor)

{
event descriptor.mode = ENABLE;

}

This primitive can be called by user tasks also to enable an event.

6.3.2.4 disable(EventDescriptor) primitive

This primitive disables an event whose event descriptor is passed to it. It just changes

the value under mode field in the event descriptor to DISABLE. The pseudocode:

disable (event descriptor)

{
event descriptor.mode = DISABLE;

}

If an event is of type ONE_OFF, on the expiry of its event counter the associated next
event has to be enabled while the current event has to be disabled. Calling this primitive
disables the current event. This can be called from the application tasks also. In some

situations a task needs to disable an event, it is made possible by this primitive.

6.4 Events of ‘ONE_OFF’ type: their significance

As explained under section 6.2.2, by establishing flags for corresponding to 10
milliseconds, 1 second, 1 minute and 1 hour we achieve event counters with same
resolution. But say if we need a time that is not completely of one resolution say 20
minutes 30 seconds and 10 milliseconds. To achieve this kind of time intervals with the
events, we define three events with different granularities- one with minutes, one with
seconds and one with 10 milliseconds. All these events are defined as ON-OFF type.
Further only one of them is enabled. When this enabled event’s event counter expires,
this current event is disabled while the one (of the remaining two events) is enabled.
When this event expires, it is disabled while the last is enabled. On the expiry of this
event’s counter the necessary action(s) are invoked by the IEM. And this event is

disabled while the first is enabled.

This entire thing is made possible by defining the three chain events event descriptors as
explained. Say these three events are having their indices 3,5,9 in Event Descriptor
Table. Therefore event 3 is having event descriptor event descriptor table[3], event 5
has event descriptor_table[5] and event 9 is controlled by event descriptor table[9].
DETAILS:

1.Say event 3 has a 10 millisecond, event 5 has 1 second and event 9 has Iminute
resolution. So thresholds for each of the event are 10, 30 and 20 respectively.

2. While event 9 is enabled and remaining two are disabled.

3. Event 9 on its counter expiry enables event 5, event 5 on its counter expiring
enables event 3 and finally on event 3’s counter expiration event 9 is to be enabled.

4. At the same time of enabling next event the current events are disabled

5. So on the expiry of event 3 counter action is to be taken, say task 2() has to be
released. While on the expiry of event 5 and event 9 we need to enable next event
mentioned under the next event field.

The above-specified details are achieved by the following event descriptor
configuration. The most important thing is how the nextEvent field links the related

ONE_OFF events. Notice this field carefully.

TABLE VI
Mode Type | Thres | Evcntr Opcode Semaphores | Tasks | Messagelndex | Next Event

OPC_RELEASE
3 | DISABLED | ONE OFF | 10 10 - ! - 0x02 - 9
OPC_ENABLE_NEXT

DISABLED | ONE_OFF | 30 30 | OPC_ENABLE_NEXT - - - 3

9| enaBLED | ONE OFF | 20 20 | OPC_ENABLE_NEXT - - - 5

MAX

g End of Chapter6 g

Gourinath Banda 96

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 7. Conclusion

The kernel implementation was done in five phases and resulted in five versions of the
HARTEX,, starting with version 0.0 to 0.5. The development was carried out in a cycle
that coincided with spiral software development cycle. During each phase a new module

1s added into the kernel.

First task manager module is implemented and the most important context switching
and preemption is tested in detail. Then development continued with other modules in
the order: resource manager (ver 0.1), Integrated event manager (ver 0.2),
synchronization part of software bus module (ver 0.4) and finally communication part
of software bus module (ver 0.5). After each version the modules are tested on an
individual basis and integrated basis for their respective functionalities. All the modules

met the individual requirements which resulted in HARTEX,, .

Both periodic task and aperiodic tasks were released by the integrated event
management and tested. The main concerns behind this kernel development were fast,
powerful and less memory overhead. HARTEX,, is developed in ‘C’ employing GNU
GCC compiler which is a free ware. HARTEX,, when compiled with GNU GCC
reported that total code size was less than 3 KB size while the memory used both by
user tasks and kernel was less than 200 bytes. There was no apparent jitter when tested
on the oscilloscope, which is as expected following the novel techniques employing

Boolean vectors.

Future work

Kernels have a great potency but it needs to be configured as per the application
software. The future work on this kernel might be to develop some monitoring support,
a configuration tool using which the kernel can be configured easily and exactly as per

user tasks.

E End of Chapter7 g

Gourinath Banda 97

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Chapter 8. References

[1]. Christo Angelov
Updated lecture notes of SIS courses, Semester2 MSc Mechatronics, University of
Southern Denmark — Mads Clausen Institute for product Innovation.

[2]. Software group
Design requirements and specifications of a Real-time kernel for HS8/3002
microcontrollers, Danfoss A/S, Nordborg.

[3] OSEK/VDX steering committee
OSEK/VDX RTOS specifications for automotive applications, Version 2.2.1,
January 16w, 2003.

[4] Andreas Engberg, Anders Pettersson
Asterix: A prototype of a small-sized real-time kernel, Malardalen University, MRTC,
SWEDEN.

[5] Christo Angelov

Design specification of HARTEX 4y - A distributed hard real-time kernel for AVR
microcontroller-based embedded applications, University of Southern Denmark — Mads
Clausen Institute for product Innovation, Software Engineering Group

[6] Jane W.S. Liu
Real-Time Systems, section 8.6, p300-301, Prentice Hall, 2000.

[7] Krzysztof Sierszecki

Stack-Based Ceiling Priority Protocol Implementations, rev 0.2 , 2003, University of
Southern Denmark — Mads Clausen Institute for product Innovation, Software
Engineering Group

[8] Krzysztof Sierszecki

Stack management algorithm for AVR microcontrollers and implementation with
GNUGCC compiler

E End of Chapter8 g

Gourinath Banda 08
HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Appendix

C- source code of HARTEX,, kernel, specific to GNU GCC compiler.

1. Main

#include
#include
#include

#include
#include
#include
#include
#include

#include
#include

#include
#include

function

<avr/io.h>
<avr/interrupt.h>
<avr/signal.h>

"../kernel 0 5/TaskManager.h"
"../kernel 0 5/ResourceManager.h"
"../kernel 0 5/IntegratedEventManager.h"
"../kernel 0 5/SynchronizationBus.h"
"../kernel 0 5/CommunicationBus.h"

"../kernel 0 5/include/typedef.h"
"../kernel 0 5/include/global.h"

"task.h"
"events.h"

SIGNAL (SIG_INTERRUPT7)

{

eventManager (EXT EVENT 7);

}

SIGNAL (SIG_INTERRUPT6)

{

release (TASK6V) ;

}

/*also write here the external interrupts that are linked with the */

/*events

in the event descriptor table */

/*this interrupt should occurs every 10 milli seconds*/

SIGNAL (SIG_OUTPUT_ COMPAREIA)

{
static
static
static
static
static
static
static

FLAG msec FLAG = CLEAR;
FLAG sec_FLAG CLEAR;
FLAG miniFLAG CLEAR;
FLAG hr_FLAG CLEAR;
UBYTE msec = 0;
UBYTE sec = 0;
UBYTE min 0z

msec_FLAG = RAISE; /*raise the 10msec FLAG*/

msec++

’

if (msec == 100) {
sec_FLAG = RAISE; /*raise the sec FLAG*/
sec++;
msec = 0 ; /*reset the milliSecond counter*/

}

if (sec

== 60) {

min FLAG = RAISE; /*raise the min FLAG*/

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

(0]0)

ALy e 3

sec = 0 ; /*reset the second counter*/
}
if (min == 60) {

hr FLAG = RAISE; /*raise the min FLAG*/

min = 0 ; /*reset the minute counter*/

}

/* EVENT MANGER INVOCATION*/
if (msec FLAG == RAISE)
sweepTable(10 mS EVENT Table, MAX 10mS EVENT) ;

if (sec FLAG == RAISE)
sweepTable (SEC_EVENT Table, MAX SEC EVENT) ;

if (min FLAG == RAISE)
sweepTable (MIN_ EVENT Table, MAX MIN EVENT) ;

if (hr FLAG == RAISE)
sweepTable (HR EVENT Table, MAX HR EVENT) ;

/*clearFlags*/

msec_ FLAG = CLEAR;

sec FLAG = CLEAR;
min FLAG = CLEAR;
hr FLAG = CLEAR;

void hd init(void)

{

}

UWORD ocr = 40000;

DDRA = OxFF; /* 0-7 output */

DDRB = OxFF; /* 0-7 output */

PORTB = 0xFF;

DDRD = 0x00; /* 0-7 input */

EIMSK |= (1<<INT7) | (1<<INT6);/*enable 6, 7 external interrupts */
EICR |= (1<<ISC71) | (1<<ISCel);

/* interrupt request for INT7 ,INT6 on falling edge */

OCR1AH = (UBYTE) ((ocr >> 8)& OxFF);
OCR1AL = (UBYTE) (ocr & O0xO0O0FF) ;
TCCR1IB = (1<<CTC1l) | (0<<CS12) | (0<<CS11) | (1<<CS10) ;
/* prescale factor 1 and counter cleared*/
TIMSK |= (1<<OCIE1A);

/* Enable Timerl Output CompareMatch Interrupt*/

int main(void)

{

hd init();
kernelStartUp () ;
return O;

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

2. task.c

#include <avr/io.h>
#include <avr/interrupt.h>

#include "../kernel 0 5/TaskManager.h"
#include "../kernel 0 4/ResourceManager.h"
#include "../kernel 0 5/include/typedef.h"
#include "../kernel 0 5/include/global.h"
#include "../kernel 0 5/SynchronizationBus.h"
#include "../kernel 0_5/CommunicationBus.h"

#include "task.h"
#include "message.h"
#include "resource.h"
#include "semaphore.h"

TCB tdef TCB[MAX TASK] = {
{

(void*) 0,

(void*) 0,

(void*) &msgDestBuf2,

(void*) 0,

(void*) 0,

(void*) &émsgDestBuf5,

(void*) émsgDestBuf6,

(void*) 0,
}i

void (*start task[MAX TASK]) (void) =
{ task0, taskl,task2,task3,taskd4,taskb5, task6,task7};

void delay (ULONG delay)
{
while (delay--) {
asm volatile ("nop"::);
}
}

void taskO (void)
{

sei();
PORTB "= 0x01;
taskExit () ;

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Gourinath Banda
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

3. task.h

#ifndef TASK H

#define TASK H

#include "message.h"

#define TASKO O
#define TASK1 1
#define TASK2 2
#define TASK3 3
#define TASK4 4
#define TASK5 5
#define TASK6 6
#define TASK7 7
#define TASKOV (TVEC)bit vect [TASKO]
#define TASK1V (TVEC)bit vect [TASKI1]
#define TASK2V (TVEC)bit vect [TASK2]
#define TASK3V (TVEC)bit vect [TASK3]
#define TASK4V (TVEC)bit vect [TASK4]
#define TASKSV (TVEC)bit vect [TASKS5]
#define TASK6V (TVEC)bit vect [TASK6]
#define TASK7V (TVEC)bit vect [TASK7]

#define MAX TASK 8

void task0 (void) ;
void taskl (void) ;
void task2 (void)
void task3(void) ;
void task4 (void) ;
)
)
)

r

void taskb5(void) ;
void task6 (void

void task7 (void

’

(
(
(
(
(
(
(
(4
union msgDestBuf6_ s {
struct temperature s temperature;
struct pressure s pressure;
} msgDestBufb6;

union msgDestBuf5 s {

struct temperature s temperature;
} msgDestBufb5;
union msgDestBuf2 s ({

struct pressure s pressure;

} msgDestBuf2;

#endif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

4. Events.c

#include "events.h"
#include "message.h"

/* typedef struct ({
UBYTE mode;
UBYTE type;
ULONG threshold;
ULONG event counter;
UBYTE OPC;
Semaphore semaphore;
TVEC tasks;
MsgIndex message;
UBYTE nextEvent;

} ED_tdef;

x/

/* initialize all fields*/

ED tdef ED Table[MAX EVENTS] = ({
{
ENABLE, FREE RUNNING, 1, 1,0PC_RELEASE, NA, 0x01, NA, NA
} 14
{
ENABLE, FREE RUNNING, 1, l,OPCisENDiMSG, NA, NA, TEMPERATURE, NA
o

}i

/*£ill the approproate indeces in the 10 milli-Second Events Table*/
IndexTable 10 mS EVENT Table[MAX 10mS EVENT] = {

bi

/*fill the approproate indeces in the 1 Second Events Table*/
IndexTable SEC EVENT Table[MAX SEC EVENT] = {0

bi

/*fill the approproate indeces in the 1 Minute Events Table*/
IndexTable MIN EVENT Table[MAX MIN EVENT] =

bi

/*fill the approproate indeces in the 1 Hour Events Table*/

IndexTable HR EVENT Table[MAX HR EVENT] = {
bi
IndexTable EXT EVENT Table[MAX EXT EVENT] = {1
bi
Gourinath Banda 104

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

5. Eve

nts.h

#ifndef EVENT DESCRIPTORS H

#define _ EVENT DESCRIPTORS H

#include "../kernel 0 5/IntegratedEventManager.h"
#include "../kernel 0 5/include/typedef.h"

#include "task.h"
#include "semaphore.h"

#define
#define
#define
#define
#define
#define

#define

MAX HR_

#define

extern

extern
extern
extern
extern
extern

#endif

NA 0

MAX 10mS_EVENT
MAX SEC_EVENT
MAX MIN EVENT
MAX HR_EVENT

oNeoN el

MAX_EXT_EVENT 1

MAX_EVENTS (MAX 10mS_EVENT + MAX SEC_EVENT + MAX MIN EVENT +

EVENT + MAX EXT EVENT)
EXT EVENT 7 &ED Table[1]
ED _tdef ED Tablel[];

IndexTable 10 mS EVENT Tablel[]

IndexTable SEC EVENT Table [1;

IndexTable MIN EVENT Table [1:
[l
[]

’

’

IndexTable HR EVENT Table
IndexTable EXT EVENT Table

’

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Appendix

6. resources.h

Gourinath Banda 106
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

Appendix

7. semaphore.c

Gourinath Banda 107
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

8. semaphore.h

#ifndef SEMAPHORES H

#define _ SEMAPHORES H

#include "../kernel 0 5/include/typedef.h"
/*number of semaphores for event notification in sychronizing */

#define MAX SYNCH SEMAPHORE 16

#define SEMO (Semaphore)0
#define SEM1 (Semaphore)l
#define SEM2 (Semaphore) 2
#define SEM3 (Semaphore) 3
#define SEM4 (Semaphore)4
#define SEM5 (Semaphore)5
#define SEM6 (Semaphore) 6
#define SEM7 (Semaphore) 7
#define SEM8 (Semaphore) 8
#define SEM9 (Semaphore) 9
#define SEM10 (Semaphore)l0
#define SEM11 (Semaphore)ll
#define SEM12 (Semaphore)l12
#define SEM13 (Semaphore)l3
#define SEM14 (Semaphore)l14
#define SEM15 (Semaphore)l5

#endif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Appendix

9. message.c

Gourinath Banda 109
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

Appendix

10. message.h

Gourinath Banda 110
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

11. TaskManager.c

#include <avr/interrupt.h>

#include "TaskManager.h"
#include "TaskManager .h"

#include "include/global.h"
void preempt (void)
{

TVEC HP;

ENTER CRITICAL;

if (ATV) { // Assumption: ATV is non zero value
HP = find_msb(ATV & BTV) ;
if (RT != NO TASK) { // there is running task

if (HP > RT) {
STORE CONTEXT;
STORE RT;
RT = HP;

(*start task[RT]) (); // Jjust let it run

LOAD RT;
LOAD CONTEXT;
}
}

else {
RT = HP;
(*start_taskI[RT]) (); // Jjust let HP run

EXIT CRITICAL;
}

void schedule (void)
{
ENTER CRITICAL;
if (ATV) {
RT = find msb (ATV) ;

(*start_taskI[RT]) (); // Jjust let it run

}
EXIT CRITICAL;
}

void release (TVEC tasks)
{
ENTER_CRITICAL;
ATV |= (TVEC)tasks;
preempt () ;
EXIT CRITICAL;

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

Gourinath Banda
HARTEXy - Scalable Real-Time Kernel For Small Embedded Systems

12.TaskManager.h

#ifndef TASK MANAGER H

#define TASK MANAGER H

#include "include/typedef.h"

void kernelStartUp (void) ;
void release (TVEC tasks) ;
void taskExit (void) ;

void preempt (void) ;

#endif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

'JJ

13. ResourceManager.c

#include <avr/interrupt.h>

#include "TaskManager.h"
#include "ResourceManager.h"
#include "ResourceManager .h"

#include "include/typedef.h"
#include "include/global.h"

void lock (RESOURCE resource)
{
ENTER_CRITICAL;
if (RCB[resource].ceiling >= PI) {
pushPiStack (PI) ;
PI = RCB[resource] .ceiling;
BTV = (TVEC)~(BTV | (TVEC)PI Table[PI+1l]);
}
EXIT CRITICAL;
}

void unlock (RESOURCE resource)

{
ENTER CRITICAL;

if (RCB[resource].ceiling == PI) {
popPiStack(&PI);
BTV = (TVEC)~(BTV & (TVEC)PIiTable[PI+l]);

preempt () ;
}
EXIT CRITICAL;
}

void pushPiStack (SBYTE pi)

{
ENTER CRITICAL;
PI_Stack[top++]= pi;
EXIT CRITICAL;

}

void popPiStack (SBYTE *pi)
{
ENTER CRITICAL;
*pi = PI_Stack[--topl;
EXIT CRITICAL;

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

14. ResourceManager.h

#ifndef _ RESOURCE MANAGER H

#define _ RESOURCE MANAGER H

#include "include/typedef.h"

void lock (RESOURCE resource) ;
void unlock (RESOURCE resource) ;

fendif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

15. ResourceManager .h

#ifndef RESOURCE MANAGER H

#define RESOURCE MANAGER H
#include "include/typedef.h"
extern TVEC BTV;

SBYTE PI = -1;
UBYTE top = 0; /* top of stack index*/

extern RCB tdef RCB[];
extern UBYTE PI_ Stack[];
UWORD PI Table[17] = { 0x0000, 0x0001, 0x0003, 0x0007,
0x000F, 0x00l1F, O0x0Q3F, 0x007F,
0x00FF, 0x01lFF, OxO03FF, O0xO07FF,
0x0FFF, Ox1FFF, Ox3FFF, Ox7FFF,0xFFFF };

void pushPiStack (SBYTE pi) ;
void popPiStack (SBYTE *pi) ;

#endif

Gourinath Banda 116

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

16. IntegratedEventManager.c

#include <avr/interrupt.h>

#include "IntegratedEventManager.h"
#include "IntegratedEventManager .h"
#include "TaskManager.h"

#include "SynchronizationBus.h"
#include "CommunicationBus.h"
#include "include/global.h"

void sweepTable (IndexTable *index table, UBYTE length)
{

int 1i;

for (1 = 0; i < length; i++) {
eventManager (&ED Table[index table[i]]);

}

void eventManager (ED_tdef *EventDescriptor)

{
if (EventDescriptor->mode == ENABLE) {/* If the event is enabled*/

(EventDescriptor->event counter)--;
/* decrement the event counter*/

if (EventDescriptor->event counter == 0) {
executeOPC (EventDescriptor) ;
EventDescriptor->event counter = EventDescriptor->threshold;
if (EventDescriptor->type == ONE OFF) ({
/*if event is one-off type*/
disable (EventDescriptor) ;

}

void executeOPC (ED_tdef *EventDescriptor)

{
if (EventDescriptor->OPC & OPC SIGNAL) {
signal and release (EventDescriptor->semaphore,
EventDescriptor->tasks) ;

if (EventDescriptor->0OPC & OPC_SEND MSG) {
broadcast (EventDescriptor->message) ;

if (EventDescriptor->OPC & OPC_ENABLE EVENT) {
enableNext (EventDescriptor) ;

if (EventDescriptor->OPC & OPC RELEASE) {
release (EventDescriptor->tasks) ;

/* disables the event*/
void disable (ED_tdef *EventDescriptor)

{
EventDescriptor->mode = DISABLE;

/* enables that event to be started after the current event*/
void enableNext (ED_tdef *EventDescriptor)
{
ED Table[EventDescriptor->nextEvent].mode = ENABLE;
}

/*enables the event*/
void enable (ED_tdef *EventDescriptor)
{
EventDescriptor->mode = ENABLE;
}

Gourinath Banda 118

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

17. IntegratedEventManager.h

#ifndef INTEGRATED EVENT MANAGER H

#define _ INTEGRATED EVENT MANAGER H

#include "include/typedef.h"

#define OPC SIGNAL 0x01
#define OPC RELEASE 0x02
#define OPC_SEND MSG 0x04
#define OPC ENABLE EVENT 0x08
#define DISABLE 0
#define ENABLE 1
#define ONE OFF 1

#define FREE RUNNING 2

void sweepTable (IndexTable *index table, UBYTE length) ;
void eventManager (ED_tdef *EventDescriptor) ;

void enable (ED_tdef *EventDescriptor) ;

fendif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

18. IntegratedEventManager .h

#ifndef
#define

_INTEGRATED EVENT MANAGER H
_INTEGRATED EVENT MANAGER H

#include "include/typedef.h"

#define
#define

extern
extern
extern
extern
extern

extern

DISABLE O

ENABLE 1
ED tdef ED Table ;
IndexTable 10 mS EVENT Tabl I

IndexTable MIN EVENT Table

[l

el
IndexTable SEC EVENT Table [];

[l
IndexTable HR EVENT Table []

IndexTable EXT EVENT Table [z

void executeOPC (ED_tdef *EventDescriptor) ;
void disable (ED_tdef *EventDescriptor);
void enableNext (ED_tdef *EventDescriptor) ;

fendif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

19. SynchronizationBus.c

#include

#include
#include

#include
#include

#include

<avr/interrupt.h>

"SynchronizationBus.h"
"SynchronizationBus_.h"

"TaskManager .h"
"TaskManager.h"

"include/global.h"

void signal and release (Semaphore semaphore, TVEC tasks)

{

ENTER CRITICAL;

SCB[semaphore] .flags |= tasks;
release (SCB|[semaphore] .tasks) ;
EXIT CRITICAL;

}

UBYTE test and reset (Semaphore semaphore)

{

ENTER CRITICAL;
if (SCB[semaphore].flags & bit vect[RT]) {
SCB[semaphore] .flags &= ~bit vect[RT];

/*clear the flag corresponding to the RT*/

EXIT CRITICAL;
return TRUE;

}

else {

EXIT CRITICAL;
return FALSE;

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

20. SynchronizationBus.h

#ifndef SYNCHRONIZATION BUS H

#define _ SYNCHRONIZATION BUS H

#include "include/typedef.h"

void signal and release (Semaphore semaphore, TVEC tasks);
UBYTE test_and reset (Semaphore semaphore) ;

#endif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

21. SynchronizationBus _.h

#ifndef SYNCHRONIZATION BUS H

#define _ SYNCHRONIZATION BUS H

#include "include/typedef.h"

extern SCB tdef SCB[];
extern volatile UBYTE RT;

#endif

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

22. CommunicationBus.c

#include <avr/interrupt.h>

#include "CommunicationBus.h"
#include "CommunicationBus .h"

#include "TaskManager.h"

#include "include/typedef.h"
#include "include/global.h"

void msg_signal and release (Semaphore semaphore, TVEC tasks)
{

ENTER CRITICAL;

MsgSCB[semaphore] . flags |= tasks;

release (MsgSCB[semaphore] . tasks) ;

EXIT CRITICAL;
}

UBYTE msg_test and reset (Semaphore semaphore)
{
ENTER CRITICAL;
if (MsgSCB[semaphore].flags & bit vect[RT]) {
MsgSCB [semaphore] . flags &= ~bit vect[RT];
/*clear the flag corresponding
to the RT*/
EXIT CRITICAL;
return TRUE;
}
else {
EXIT CRITICAL;
return FALSE;

void broadcast (MsgIndex message)

{
ENTER CRITICAL;
msg_signal and release (message,MCB|[message] .receivers);
EXIT_CRITICAL;

}

UBYTE receive (MsgIndex message)
{
ENTER_CRITICAL;
if (msg test and reset (message)) {
copy message (MCB[message] .sourceBuffer,
TCB[RT] .msgLocalBuffer, MCB|[message].length);
EXIT CRITICAL;
return TRUE;
}
else(
EXIT CRITICAL;
return FALSE;

void* getMsgSourceBuffer (MsgIndex message)
{

return (MCB[message] . sourceBuffer) ;

}

void* getMsgDestinationBuffer (void)
{

return (TCBI[RT] .msglLocalBuffer);
}

UBYTE getMsgLength (MsgIndex message)
{

return (MCB[message] .length);
}

void copy message(UBYTE *source, UBYTE *destination, UBYTE length)
{

while (length--) {
destination[length] = source[length];

}

Gourinath Banda

HARTEX, - Scalable Real-Time Kernel For Small Embedded Systems

D

23. CommunicationBus.h

#ifndef COMMUNICATION BUS H

#define _ COMMUNICATION BUS H

#include "include/typedef.h"

void broadcast(MsgIndex message) ;
UBYTE receive (MsgIndex message) ;

void* getMsgSourceBuffer (MsgIndex message) ;
void* getMsgDestinationBuffer (void) ;
UBYTE getMsgLength (MsgIndex message) ;

#endif

24. CommunicationBus .h

#ifndef COMMUNICATION BUS H

#define _ COMMUNICATION BUS H

#include "include/typedef.h"
extern TCB tdef TCBI[];
extern MCB_ tdef MCBI[];
extern MsgSCB tdef MsgSCB|[] ;

extern volatile UBYTE RT;

void msg signal and release (Semaphore semaphore, TVEC tasks);
UBYTE msg_test and reset (Semaphore semaphore) ;

void copy message(UBYTE *source, UBYTE *destination, UBYTE length) ;

fendif

——

End of Project
Report

