Equivalence of NFA and Regular Expressions

Dr. Neminath Hubballi
Indian Institute of Technology Indore

January 17, 2018

Overview

(1) Equivalence Proof

(2) Regular Languages and Equivalence

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has
(1) A single start and final state.

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has
(1) A single start and final state.
(2) There is no incoming edge on start state.

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has
(1) A single start and final state.
(2) There is no incoming edge on start state.
(3) There is no outgoing edge on final state.

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has
(1) A single start and final state.
(2) There is no incoming edge on start state.
(3) There is no outgoing edge on final state.
(9) Any edge between states q_{i} and q_{j} is a regular expression r.

Generalized NFA

Definition

A Generalized Transition Graph is an NFA which has
(1) A single start and final state.
(2) There is no incoming edge on start state.
(3) There is no outgoing edge on final state.
(9) Any edge between states q_{i} and q_{j} is a regular expression r.

Generalized NFA

$$
\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

Generalized NFA

$\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
 where

Generalized NFA

$$
\begin{aligned}
& \mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \text { where } \\
& Q \text { - Finite non empty set of states. }
\end{aligned}
$$

Generalized NFA

$$
\begin{aligned}
& \mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \text { where } \\
& Q \text { - Finite non empty set of states. } \\
& \Sigma \text { - Finite non empty set of alphabet }
\end{aligned}
$$

Generalized NFA

$$
\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where
Q - Finite non empty set of states.
Σ - Finite non empty set of alphabet
q_{0} - Start state

Generalized NFA

$$
\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where
Q - Finite non empty set of states.
Σ - Finite non empty set of alphabet
q_{0} - Start state
$F=\left\{q_{f}\right\}$ (Final state)

Generalized NFA

$\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
where
Q - Finite non empty set of states.
Σ - Finite non empty set of alphabet
q_{0} - Start state
$F=\left\{q_{f}\right\}$ (Final state)
$\delta:\{\mathrm{Q}-\mathrm{F}\} \times\left\{\mathrm{Q}-q_{0}\right\} \rightarrow R_{\Sigma}$ Transition function with mapping of every state to a regular expression

Generalized NFA

(1) Transition: NFA reads a block of symbols from input and makes a non-deterministic move from state q_{i} to state q_{j}

Generalized NFA

(1) Transition: NFA reads a block of symbols from input and makes a non-deterministic move from state q_{i} to state q_{j}
(2) Acceptance: NFA reads all input symbols in w through a sequence of moves $q_{0}, \cdots q_{f}$ where $q_{f} \in F$. i.e., $\delta^{*}\left(q_{0}, w\right)=q_{f}$

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Proof:

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Proof:
(1) Convert given NFA into GNFA.

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Proof:
(1) Convert given NFA into GNFA.
(2) If GNFA has only two states q_{0} and q_{f} then regular expression is the label on edge from q_{0} to q_{f}

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Proof:
(1) Convert given NFA into GNFA.
(2) If GNFA has only two states q_{0} and q_{f} then regular expression is the label on edge from q_{0} to q_{f}
(3) IF GNFA has $K \geq 3$ states then reduce it to a GNFA with $K-1$ states successively to get a GNFA with 2 states.

Generalized NFA

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(M)=L(r)$

Proof:
(1) Convert given NFA into GNFA.
(2) If GNFA has only two states q_{0} and q_{f} then regular expression is the label on edge from q_{0} to q_{f}
(3) IF GNFA has $K \geq 3$ states then reduce it to a GNFA with $K-1$ states successively to get a GNFA with 2 states.

Generalized NFA

GNFA with K states to GNFA with $K-1$ states

Generalized NFA

GNFA with K states to GNFA with $K-1$ states $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Generalized NFA

GNFA with K states to GNFA with $K-1$ states $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$

Generalized NFA

GNFA with K states to GNFA with $K-1$ states $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$
where

Generalized NFA

GNFA with K states to GNFA with $K-1$ states $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$
where
$Q^{\prime}=\left\{Q-q_{i}\right\} q_{i} \in Q$ and $q_{i} \neq q_{0}$ and $q_{i} \neq q_{f}$

Generalized NFA

GNFA with K states to GNFA with $K-1$ states $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$
where
$Q^{\prime}=\left\{Q-q_{i}\right\} q_{i} \in Q$ and $q_{i} \neq q_{0}$ and $q_{i} \neq q_{f}$ Transitions:

Generalized NFA

GNFA with K states to GNFA with $K-1$ states
$\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$
where
$Q^{\prime}=\left\{Q-q_{i}\right\} q_{i} \in Q$ and $q_{i} \neq q_{0}$ and $q_{i} \neq q_{f}$
Transitions:
(1) For any two states q_{a} and $q_{b} \in Q^{11}$ with transitions $\delta\left(q_{a}, r_{1}\right)=q_{i}, \delta\left(q_{i}, r_{2}\right)=q_{i}$ and $\delta\left(q_{i}, r_{3}\right)=q_{b}$ and $\delta\left(q_{a}, r_{4}\right)=q_{b}$ Add an edge from q_{a} to q_{b} with the regular expression $r_{1} r_{2}^{*} r_{3}+r_{4}$

Generalized NFA

GNFA with K states to GNFA with $K-1$ states
$\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\mathcal{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F\right)$
where
$Q^{\prime}=\left\{Q-q_{i}\right\} q_{i} \in Q$ and $q_{i} \neq q_{0}$ and $q_{i} \neq q_{f}$
Transitions:
(1) For any two states q_{a} and $q_{b} \in Q^{11}$ with transitions $\delta\left(q_{a}, r_{1}\right)=q_{i}, \delta\left(q_{i}, r_{2}\right)=q_{i}$ and $\delta\left(q_{i}, r_{3}\right)=q_{b}$ and $\delta\left(q_{a}, r_{4}\right)=q_{b}$ Add an edge from q_{a} to q_{b} with the regular expression $r_{1} r_{2}^{*} r_{3}+r_{4}$
(2) For cases q_{a} and $q_{b} \in Q^{\prime}$ where \nexists a path from q_{a} to q_{b} through q_{i} but there is a direct edge with label r, retain that label.

Generalized NFA

Correctness Claim: Has two parts

Generalized NFA

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$

Generalized NFA

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$

Generalized NFA

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$ $\delta^{*}\left(q_{0}, w\right)=q_{f}$

Generalized NFA

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$
$\delta^{*}\left(q_{0}, w\right)=q_{f}$
$=\delta^{*}\left(q_{0}, a_{1} a_{2}, \cdots, a_{n}\right)=q_{f}$

Generalized NFA

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$
$\delta^{*}\left(q_{0}, w\right)=q_{f}$
$=\delta^{*}\left(q_{0}, a_{1} a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{0}, a_{1}\right), a_{2}, \cdots, a_{n}\right)=q_{f}$

Generalized NFA

Correctness Claim: Has two parts
Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$
$\delta^{*}\left(q_{0}, w\right)=q_{f}$
$=\delta^{*}\left(q_{0}, a_{1} a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{0}, a_{1}\right), a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(q_{I}, a_{2}, \cdots, a_{n}\right)=q_{f}$

Generalized NFA

Correctness Claim: Has two parts
Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$
$\delta^{*}\left(q_{0}, w\right)=q_{f}$
$=\delta^{*}\left(q_{0}, a_{1} a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{0}, a_{1}\right), a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(q_{l}, a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{l}, a_{2}\right), a_{3}, \cdots, a_{n}\right)=q_{f}$

Generalized NFA

Correctness Claim: Has two parts
Part 1) If $w \in L(M) \Rightarrow w \in L\left(M^{\prime}\right)$
Let $w=a_{1} a_{2}, \cdots, a_{n} \in L(M) \Rightarrow$
$\delta^{*}\left(q_{0}, w\right)=q_{f}$
$=\delta^{*}\left(q_{0}, a_{1} a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{0}, a_{1}\right), a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(q_{I}, a_{2}, \cdots, a_{n}\right)=q_{f}$
$=\delta^{*}\left(\delta\left(q_{l}, a_{2}\right), a_{3}, \cdots, a_{n}\right)=q_{f}$
$=\delta\left(q_{k}, a_{n}\right)=q_{f}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$ $\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$

$$
\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f} \text { where } q_{y} \neq q_{i}
$$

(2) $\delta^{*}\left(q_{0}, w\right)=q_{0}, \cdots, q_{j}, q_{i}, \cdots, q_{i}, q_{m}, \cdots, q_{f}$ After reading $a_{1}, \cdots, a_{i-1}, a_{i}, \cdots, a_{i+1}, \cdots a_{n}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$
$\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i}$
(2) $\delta^{*}\left(q_{0}, w\right)=q_{0}, \cdots, q_{j}, q_{i}, \cdots, q_{i}, q_{m}, \cdots, q_{f}$ After reading $a_{1}, \cdots, a_{i-1}, a_{i}, \cdots, a_{i+1}, \cdots a_{n}$ $\Rightarrow a_{i} \in r_{i-1}$ and $a_{i+1} \in r_{i+1}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$ $\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i}$
(2) $\delta^{*}\left(q_{0}, w\right)=q_{0}, \cdots, q_{j}, q_{i}, \cdots, q_{i}, q_{m}, \cdots, q_{f}$ After reading $a_{1}, \cdots, a_{i-1}, a_{i}, \cdots, a_{i+1}, \cdots a_{n}$ $\Rightarrow a_{i} \in r_{i-1}$ and $a_{i+1} \in r_{i+1}$ which is nothing but $r_{i-1} r_{i}^{*} r_{i+1}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$
$\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i}$
(2) $\delta^{*}\left(q_{0}, w\right)=q_{0}, \cdots, q_{j}, q_{i}, \cdots, q_{i}, q_{m}, \cdots, q_{f}$ After reading $a_{1}, \cdots, a_{i-1}, a_{i}, \cdots, a_{i+1}, \cdots a_{n}$
$\Rightarrow a_{i} \in r_{i-1}$ and $a_{i+1} \in r_{i+1}$
which is nothing but $r_{i-1} r_{i}^{*} r_{i+1}$
$\Rightarrow \delta^{\prime *}\left(q_{0}, w\right)=q_{f}$

Generalized NFA

The sequence of states visited are $q_{0}, q_{1}, \cdots, q_{f}$ Two cases
(1) $\delta^{*}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i} . \Rightarrow$
$\delta^{\prime *}\left(q_{0}, w\right)=q_{0}, q_{1}, \cdots q_{f}$ where $q_{y} \neq q_{i}$
(2) $\delta^{*}\left(q_{0}, w\right)=q_{0}, \cdots, q_{j}, q_{i}, \cdots, q_{i}, q_{m}, \cdots, q_{f}$ After reading $a_{1}, \cdots, a_{i-1}, a_{i}, \cdots, a_{i+1}, \cdots a_{n}$
$\Rightarrow a_{i} \in r_{i-1}$ and $a_{i+1} \in r_{i+1}$
which is nothing but $r_{i-1} r_{i}^{*} r_{i+1}$
$\Rightarrow \delta^{\prime *}\left(q_{0}, w\right)=q_{f}$

Generalized NFA

Part 2: If $w \in L\left(M^{\prime}\right) \Rightarrow w \in L(M)$

Generalized NFA

Part 2: If $w \in L\left(M^{\prime}\right) \Rightarrow w \in L(M)$

Take it as exercise!

Reular Languages

Theorem

For any regular expression r with $L(r), \exists$ an NFA M such that $L(M)=L(r)$.

Theorem

For any NFA M with $L=L(M), \exists$ a regular expression r such that $L(r)=L(M)$

Theorem

For any NFA M with $L=L(M), \exists$ a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$

