Equivalence of NFA and Regular Expressions

Dr. Neminath Hubballi

Indian Institute of Technology Indore

January 17, 2018

2 Regular Languages and Equivalence

A Generalized Transition Graph is an NFA which has

• A single start and final state.

- A single start and final state.
- O There is no incoming edge on start state.

- A single start and final state.
- O There is no incoming edge on start state.
- So There is no outgoing edge on final state.

- A single start and final state.
- O There is no incoming edge on start state.
- So There is no outgoing edge on final state.
- Any edge between states q_i and q_j is a regular expression r.

- A single start and final state.
- O There is no incoming edge on start state.
- So There is no outgoing edge on final state.
- Any edge between states q_i and q_j is a regular expression r.

$\mathcal{M}{=}(Q,\Sigma,\delta,q_0,F)$

* ロ > * 個 > * 注 > * 注 >

æ

$$\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$$

where

* ロ > * 個 > * 注 > * 注 >

æ

$$\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$$

Q - Finite non empty set of states.

A 🖓

$$\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$$

- Q Finite non empty set of states.
- $\Sigma\text{-}$ Finite non empty set of alphabet

$$\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$$

- Q Finite non empty set of states.
- $\Sigma\text{-}$ Finite non empty set of alphabet
- q_0 Start state

$$\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$$

- Q Finite non empty set of states.
- $\Sigma\text{-}$ Finite non empty set of alphabet
- q_0 Start state
- $F = \{q_f\}$ (Final state)

$$\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$$

- Q Finite non empty set of states.
- $\Sigma\text{-}$ Finite non empty set of alphabet

 q_{0} - Start state

 $F = \{q_f\}$ (Final state)

 δ : {Q-F} X {Q-q₀} \rightarrow R_{Σ} Transition function with mapping of every state to a regular expression

Transition: NFA reads a block of symbols from input and makes a non-deterministic move from state q_i to state q_i

- Transition: NFA reads a block of symbols from input and makes a non-deterministic move from state q_i to state q_i
- ② Acceptance: NFA reads all input symbols in w through a sequence of moves q₀, · · · q_f where q_f ∈ F. i.e., δ^{*}(q₀, w) = q_f

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

Proof:

Convert given NFA into GNFA.

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

- Convert given NFA into GNFA.
- If GNFA has only two states q₀ and q_f then regular expression is the label on edge from q₀ to q_f

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

- Convert given NFA into GNFA.
- If GNFA has only two states q₀ and q_f then regular expression is the label on edge from q₀ to q_f
- IF GNFA has K ≥ 3 states then reduce it to a GNFA with K − 1 states successively to get a GNFA with 2 states.

For any NFA M with L = L(M), \exists a regular expression r such that L(M) = L(r)

- Convert given NFA into GNFA.
- If GNFA has only two states q₀ and q_f then regular expression is the label on edge from q₀ to q_f
- IF GNFA has K ≥ 3 states then reduce it to a GNFA with K − 1 states successively to get a GNFA with 2 states.

GNFA with K states to GNFA with K - 1 states

 $^{1}q_{a}$ and q_{b} may be same

Dr. Neminath Hubballi (IIT Indore)

Image: Image:

 ${}^{1}q_{a}$ and q_{b} may be same

Dr. Neminath Hubballi (IIT Indore)

A 🖓

 $\mathcal{M}^{'}=(\textit{Q}^{'}, \Sigma, \delta^{'}, \textit{q}_{0}, \textit{F})$

 ${}^{1}q_{a}$ and q_{b} may be same

Dr. Neminath Hubballi (IIT Indore)

$$\mathcal{M}^{'} = (\mathcal{Q}^{'}, \Sigma, \delta^{'}, q_{0}, F)$$
 where

 ${}^{1}q_{a}$ and q_{b} may be same

Dr. Neminath Hubballi (IIT Indore)

A 🖓

$$egin{aligned} \mathcal{M}^{'} &= (\mathcal{Q}^{'}, \Sigma, \delta^{'}, q_{0}, F) \ ext{where} \ \mathcal{Q}^{'} &= \{ \mathbb{Q} ext{-} q_{i} \} \ q_{i} \in \mathcal{Q} \ ext{and} \ q_{i}
eq q_{0} \ ext{and} \ q_{i}
eq \end{aligned}$$

 q_f

A 🖓

 $^{^{1}}q_{a}$ and q_{b} may be same

$$\mathcal{M}^{'} = (Q^{'}, \Sigma, \delta^{'}, q_{0}, F)$$

where
 $Q^{'} = \{Q-q_{i}\} q_{i} \in Q \text{ and } q_{i} \neq q_{0} \text{ and } q_{i} \neq q_{f}$
Transitions:

A 1

 $^{^{1}}q_{a}$ and q_{b} may be same

$$\mathcal{M}^{'}=(Q^{'},\Sigma,\delta^{'},q_{0},F)$$

where
 $Q^{'}=\{Q-q_{i}\}\;q_{i}\in Q\; ext{and}\;q_{i}
eq q_{0}\; ext{and}\;q_{i}
eq q_{f}$
Transitions:

• For any two states q_a and $q_b \in Q'^1$ with transitions $\delta(q_a, r_1) = q_i, \ \delta(q_i, r_2) = q_i \text{ and } \delta(q_i, r_3) = q_b \text{ and } \delta(q_a, r_4) = q_b$ Add an edge from q_a to q_b with the regular expression $r_1 r_2^* r_3 + r_4$

 $^{^{1}}q_{a}$ and q_{b} may be same

$$\mathcal{M}^{'}=(Q^{'},\Sigma,\delta^{'},q_{0},F)$$

where
 $Q^{'}=\{ ext{Q-}q_{i}\}\;q_{i}\in Q ext{ and }q_{i}
eq q_{0} ext{ and }q_{i}
eq q_{f}$
Transitions:

- For any two states q_a and $q_b \in Q'^1$ with transitions $\delta(q_a, r_1) = q_i, \ \delta(q_i, r_2) = q_i \text{ and } \delta(q_i, r_3) = q_b \text{ and } \delta(q_a, r_4) = q_b$ Add an edge from q_a to q_b with the regular expression $r_1r_2^*r_3 + r_4$
- Solution For cases q_a and q_b ∈ Q' where [‡] a path from q_a to q_b through q_i but there is a direct edge with label r, retain that label.

 $^{^{1}}q_{a}$ and q_{b} may be same

Correctness Claim: Has two parts

-

Image: A matrix of the second seco

3

Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L(M')$

Image: A matrix of the second seco

Correctness Claim: Has two parts **Part 1)** If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$

Correctness Claim: Has two parts **Part 1)** If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$

э

< 🗇 🕨

Correctness Claim: Has two parts **Part 1)** If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$ $= \delta^*(q_0, a_1a_2, \cdots, a_n) = q_f$

Correctness Claim: Has two parts **Part 1)** If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$ $=\delta^*(q_0, a_1a_2, \cdots, a_n) = q_f$ $=\delta^*(\delta(q_0, a_1), a_2, \cdots, a_n) = q_f$ Correctness Claim: Has two parts **Part 1)** If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \dots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$ $=\delta^*(q_0, a_1a_2, \dots, a_n) = q_f$ $=\delta^*(q_l, a_2, \dots, a_n) = q_f$ Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$ $=\delta^*(q_0, a_1a_2, \cdots, a_n) = q_f$ $=\delta^*(\delta(q_0, a_1), a_2, \cdots, a_n) = q_f$ $=\delta^*(\delta(q_l, a_2, \cdots, a_n) = q_f$ Correctness Claim: Has two parts Part 1) If $w \in L(M) \Rightarrow w \in L(M')$ Let $w = a_1a_2, \cdots, a_n \in L(M) \Rightarrow$ $\delta^*(q_0, w) = q_f$ $=\delta^*(q_0, a_1a_2, \cdots, a_n) = q_f$ $=\delta^*(\delta(q_0, a_1), a_2, \cdots, a_n) = q_f$ $=\delta^*(q_I, a_2, \cdots, a_n) = q_f$

$$=\delta(q_k,a_n)=q_f$$

.

A 🖓

A 🖓

•
$$\delta^*(q_0, w) = q_0, q_1, \cdots q_f$$
 where $q_y \neq q_i$. $\Rightarrow \delta'^*(q_0, w) = q_0, q_1, \cdots q_f$ where $q_y \neq q_i$

A 🖓

A 🖓

A 🖓

A 🖓

A 🖓

A 🖓

Part 2: If $w \in L(M') \Rightarrow w \in L(M)$

-

Image: Image:

3

Part 2: If $w \in L(M') \Rightarrow w \in L(M)$ Take it as exercise !

Image: A matrix

3

For any regular expression r with L(r), \exists an NFA M such that L(M) = L(r).

Theorem

For any NFA M with L = L(M), \exists a regular expression r such that L(r) = L(M)

Theorem

For any NFA M with L = L(M), \exists a DFA M' such that L(M) = L(M')