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I. WHY HIGH ENERGIES?

In Particle Physics, we deal with elementary constituents of matter. By elementary
we mean the particles have no substructure or they are point-like objects. However, the
elementariness depends on the spatial resolution of the probe used to investigate the possible
structure/sub-structure [1]. The resolution is ∆r if two points in an object can just be
resolved as separate when they are a distance ∆r apart. Assuming that the probing beams
themselves consist of point-like particles like electrons or positrons, the resolution is limited

by the de Broglie wavelength of these beam particles, which is given by λ = h/p , where p

is the beam momentum and h is Planck’s constant. Hence beams of high momentum have
short de Broglie wavelengths and can have high resolution. For example if we need to probe
a dimension of 1 Fermi (10−15 meter) (let’s say the inner structure of proton, the charge
radius of proton being ∼ 0.840 fm), we need to use a beam of momentum 1.47 GeV which
is given by de Broglie’s above expression. Figure 1 shows a schematic picture where a low
energy probe fails to probe the inner structure of an object unlike a high energy probe with
higher resolution. In addition to the above consideration, Einstein’s formula E = mc2

helps us to produce particles of higher masses (like the massive gauge bosons, Higgs etc.) in
nature’s way.

probe 

object 

FIG. 1: Left: A low-energy probe probing an object, Right: a high-energy probe able to probe

deep inside of the object because of higher resolution.

II. SPECIAL THEORY OF RELATIVITY & INVARIANTS

In particle physics, the particles are treated relativistically, meaning E ≈ pc� mc2 and
thus special theory of relativity becomes an mathematical tool in describing the particle
kinematics.

• Space and time can not be treated independently as is done in Newtonian mechanics.

• Physical objects that were treated as an independent three component vector and a
scalar in non-relativistic physics mix in high-energy phenomena.

• Combined to form a four-component Lorentz vector that transforms like a time and
space coordinate.

For their consistent and unified treatment, one relies on Einstein’s theory of special
relativity (STR), having the following two underlying principles.
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• Invariance of velocity of light: velocity of light always remains as the constant c in any
inertial frame.

• Relativity Principle: This requires covariance of the equations, namely the physical
law should keep its form invariant in any inertial frame of reference. In mathematical
language this amounts to the fact that physical laws have to be expressed in Lorentz
tensors.

Note that the principle of relativity applies to Galilei transformation and is valid in New-
tonian mechanics as well. But the invariance of the velocity of light necessitates Lorentz
transformation in changing from one inertial system to another that are moving relative to
each other with constant speed.

A. Lorentz Transformation

Consider a Lorentz boost in x-direction. Here, a particle at (t, x, y, z, ) in a coordinate
frame L is boosted to (t′, x′, y′, z′) with velocity v. This statement is equivalent to changing
to another coordinate frame L′ which is moving in the x-direction at velocity −v. L′ is
assumed to coincide with L at t = t′ = 0. Then the two coordinates are related by the
following equations:

t→ t′ =
t+ (v/c2)x√

1− (v/c)2
⇒ x0′ = γ

(
x0 + βx

)
,

x→ x′ =
x+ vt√

1− (v/c)2
⇒ x1′ = γ

(
βx0 + x

)
,

x2′ = x2,

x3′ = x3

(1)

where, β = v/c, γ = 1√
1−β2

. The above equations can be written in matrix form as:
x0′

x1′

x2′

x3′

 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

×

x0

x1

x2

x3

 (2)

1. The Proper Time (τ)

It is the time an observer feels in the observer’s rest frame.

Proper time dτ ≡ dt
√

1− β2 is a Lorentz invariant scalar.

Proof:
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ds2 = (cdt)2 − dx2 − dy2 − dz2

= c2dt2
[
1− dx

dt

2

− dy

dt

2

− dz

dt

2]
= c2dt2

(
1− β2

)
= (cdτ)2

is Lorentz invariant by definition.

B. What is need of the variable called ”Rapidity”?

Successive Lorentz boost in the same direction is represented by a single boost, where
the transformation velocity is given by

β′′ = |v/c|′′ = β+β′

1+ββ′

Proof:
Assume velocity v′ in frame L is observed as v′′ in frame L′′, where the frame L′ is travelling
in the x-direction with −v in frame L. The coordinates (t′, x1′) are expressed in terms of
(t, x1) using the usual Lorentz transformation equations given by Eqn. 1. Omitting other
coordinates for simplicity, one obtains:

x0′ = γ
(
x0 + βx1

)
x1′ = γ

(
βx0 + x1

)
β′ =

v′

c
=
dx1

dx0

then

β′′ =
dx1′

dx0′ =
γ (βdx0 + dx1)

γ (dx0 + βdx1)

⇒ β′′ =
β + β′

1 + ββ′
(3)

The velocity is not an additive quantity. i.e. non-linear in successive transforma-
tion. Here comes the need of ”Rapidity” to circumvent this drawback, by defining

β = tanh y or y = 1
2
ln
(

1+β
1−β

)
. One can show (we will be showing this in subsequent

sections) that rapidity is an additive quantity i.e.

y′′ = y + y′

Using the rapidity, a Lorentz transformation with finite η, can be decomposed into N
successive transformations with rapidity
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∆y = y/N

Solving β, γ in terms of y, we have

β = tanh y, γ = cosh y, βγ = sinh y

Lorentz boost given by Eqn. 1 can be rewritten as

x0′ = (cosh y) x0 + (sinh y) x1,

x1′ = (sinh y) x0 + (cosh y) x1,
(4)

Comparing this with rotation in the x− y plane:

x′ = xcos θ − ysin θ,

y′ = xsin θ + ycos θ,
(5)

Eqn. 4 can be obtained from Eqn. 5 by substituting

• θ → −iy (this y is rapidity variable )

• x→ ix0

• y → x1 (this y is the Cartesian coordinate )

Lorentz boost (in the x-direction) is formally a rotation by an angle (−iy) in the x and
imaginary time (ix0) plane.

Experimental Consideration: In high-energy collider experiments, the secondary par-
ticles which are produced from the interaction, are boosted in the z-direction (along the
beam axis). The boosted angular distribution is better expressed as rapidity distribution.
At high-energies, each particle has E ∼ pc, pII = pcos θ, and its rapidity is approximated
by so-called pseudo-rapidity:

η′ =
1

2
ln

(
1 + βII
1− βII

)
=

1

2
ln

(
E + pIIc

E − pIIc

)
∼ −ln tan θ/2. (6)

This fact is taken into account in designing detectors, which are divided into modules that
span the same solid angle in the η − φ (azimuthal angle) plane.

C. Four Vectors

Th position-time 4-vector: xµ, µ = 0, 1, 2, 3; with x0 = ct, x1 = x, x2 = y, x3 = z.

I ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2

= (x0′)2 − (x1′)2 − (x2′)2 − (x3′)2 (7)

I is called the 4-dimensional length element, which is Lorentz Invariant (LI). A quantity
having same value in all inertial frames is called an ”invariant”. This is like r2 = x2+y2+z2
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being invariant under spatial rotation. I could be written in the form of a sum:

I =
3∑

µ=0

xµxµ (8)

To take care of the negative signs, let’s define a ”metric” gµν such that

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (9)

Now
I = gµν x

µxν (10)

Define covariant 4-vector xµ (index down):

xµ = gµν x
ν (11)

xµ (index up) is called ”contravariant 4-vector”. With the above definitions, now

I = xµx
µ = xµxµ (12)

To each contravariant 4-vector aµ, a covariant 4-vector could be assigned and vice-versa.

aµ = gµνaν (13)

aµ = gµνa
ν (14)

gµν are the elements in g−1. Since g−1 = g, gµν = gµν .

Given any two 4-vectors, aµ and bµ,

aµbµ = aµb
µ = a0b0 − a1b1 − a2b2 − a3b3 (15)

is L.I.. The above operation is called ”4-vector scalar product”. Remember Einstein’s
summation convention (repeated Greek indices are to be summed).

a.b ≡ aµb
µ

= a0b0 − ~a.~b (16)

a2 ≡ a.a = (a0)2 − ~a2 (17)

The 1st term is called ”temporal” and the 2nd is called spatial component.

• If a2 > 0: aµ is called time-like. Events are in the forward light-cone. They appear
later than the origin, O. Events in the backward light-cone appear earlier to O. Only
events in the backward light-cone can influence O. And O can have an influence only
on the events in the forward cone.
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• If a2 < 0: aµ is called space-like. Events are called space-like events and there is no
interaction with O. This is related to ”causality”.

• If a2 = 0: aµ is called light-like. Connects all those events with the origin which can
be reached by a light signal.

This is shown pictorially in Figure 2.

x 

timelike future 

x = ct 
 lig

htco
ne x = -ct  lightcone 

ct 

spacelike spacelike 

timelike past 

FIG. 2: A schematic of lightcone diagram.

D. Energy-Momentum Four-Vector

The velocity of a particle is given by

~v =
d~x

dt
(18)

where d~x is the distance travelled in the laboratory frame and dt is the time measured in
the same frame. Proper velocity of the particle is given by

~η =
d~x

dτ
(19)

where d~x is the distance travelled in the laboratory frame and dτ is the proper time. Now

~η =
d~x

dτ
=

d~x

dt

dt

dτ
= ~vγ

⇒ ~η = γ~v (20)

It is easy to work with the proper velocity, ~η, as only d~x transforms under Lorentz transfor-
mation. Furthermore,

ηµ =
dxµ

dτ
(21)
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so

η0 =
dx0

dτ
=

d(ct)
1
γ
dt

= γc (22)

Hence
ηµ = γ (c, vx, vy, vz) (23)

This is called the proper velocity 4-vector. Remember that the spatial component brings up
the negative sign for covariant tensor. Now

ηµηµ = γ2
(
c2 − v2

x − v2
y − v2

z

)
= γ2c2

(
1− v2

c2

)
= γ2c2

(
1− β2

)
= c2, (24)

which is Lorentz Invariant. This also proves that 4-vector scalar product is L.I.

We know momentum = mass × velocity. And velocity can be ”ordinary
velocity” or ”proper velocity”. Classically, both are equal (non-relativistic limit).
If ~p = m~v, the conservation of momentum is inconsistent with the principle of relativity.
In relativity, momentum is the product of mass and proper velocity.

~p ≡ m~η (25)

pµ = mηµ (26)

The spatial component of pµ constitutes the (relativistic) momentum 4-vector:

~p = γm~v =
m~v√

1− v2/c2
(27)

p0 = γmc (28)

Relativistic energy, E:

E ≡ γmc2 =
mc2√

1− v2/c2
(29)

Hence,

p0 =
E

c
(30)

and the energy-momentum 4-vector:

pµ =

(
E

c
, px, py, pz

)
(31)
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Now

pµpµ =
E2

c2
− ~p 2 = m2c2 : L.I.

= (mηµ) (mηµ)

= m2 (ηµηµ)

= m2c2

⇒ pµpµ = m2 (Natural Units). (32)

⇒ E2 = ~p 2c2 +m2c4

In natural units,

E2 = ~p 2 +m2 (33)

• p2 = m2 > 0: Ordinary massive particle

• p2 = m2 = 0: Massless particles like photons, gravitons etc.

• p2 < 0: Tachyon or virtual particles

• pµ = 0: Vacuum

Remember that the relativistic equations ~p = γm~v and E = γm do not hold good for
massless particles and m = 0 is allowed only if the particle travels with the speed of light.
For massless particles,

v = c and E = |~p|c.

E. The Choice of Units

We know

x2 = c2t2 − x2
1 − x2

2 − x2
3 (34)

p2 = m2
0c

2 (35)

The velocity of light ”c” appears directly in these and many other formulas. Furthermore,
de Broglie relation between 4-momentum and wave vector of a particle is

E = h̄ω (obtained from Einstein′s equation) (36)

In 4-vector notation,
P = h̄K (37)

where P =
{
E
c
, p
}

, K =
{
ω
c
, k
}

. If we choose a system of unit in which

h̄ = c = 1 ,

where h̄ = h
2π

= 1.055×10−34 Joule sec: unit of action/angular momentum (ML2/T ).
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c = 2.998× 108 meter sec−1: unit of velocity, the velocity of light in vacuum (L/T ).

Now the relativistic formula for energy,

E2 = p2c2 +m2
0c

4 (38)

in this new system of unit (called natural unit and more popularly used in high-energy
(particle) physics) becomes

E2 = p2 +m2
0 (39)

We can define system of units completely, if we specify the unit of energy (ML2/T 2). In
particle physics, unit of energy is GeV (1 GeV = 109 eV ). This choice is motivated by
the rest mass of proton ∼ 1 GeV . This gives rise to mass (m), momentum (mc), energy
(mc2) in GeV . Length ( h̄

mc
) and time ( h̄

mc2
) in GeV −1.

Taking the values of h̄ = c = 1, one obtains,

1 sec = 1.52× 1024 GeV −1

1 meter = 5.07× 1015 GeV −1

1 fermi ≡ 1 fm = 10−13 cm = 10−15m

⇒ 1 fm = 5.07 GeV −1

1 fm = 3.33× 10−24 sec

197 MeV = 1 fm−1

Note: 1 TeV = 103 GeV = 106 MeV = 109 KeV = 1012 eV .

The additional advantage of using natural unit in high energy particle physics is that we
deal with strong interaction, whose lifetime ∼ 10−24 sec, the decay length of particle can
be better expressed in terms of fermi.

F. Collider Vs Fixed Target Experiment

1. For Symmetric Collisions (A+A)

Consider the collision of two particles. In LS, the projectile with momentum p1, energy
E1 and mass m1 collides with a particle of mass m2 at rest. The 4-momenta of the particles
are
p1 = (E1,p1), p2 = (m2,0)
In CMS, the momenta of both the particles are equal and opposite, the 4-momenta are
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p∗1 = (E∗1 ,p
∗
1), p∗2 = (E∗2 ,−p∗1)

The total 4-momentum of the system is a conserved quantity in the collision.

In CMS,

pµp
µ = (p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2

= (E1 + E2)2

= E2
cm ≡ s (40)

√
s is the total energy in the CMS which is the invariant mass of the CMS.

In LS,
pµp

µ = (p1 + p2)2 = m2
1 +m2

2 + 2E1m2 (41)

Hence

Ecm =
√
s =

√
m2

1 +m2
2 + 2Eprojm2 (42)

where E1 = Eproj, the projectile energy in LS. Hence it is evident here that the CM frame
with an invariant mass

√
s moves in the laboratory in the direction of p1 with a velocity

corresponding to:
Lorentz factor,

γcm =
E1 +m2√

s
(43)

⇒
√
s =

Elab
γcm

, (44)

this is because E = γm and
ycm = cosh−1 γcm. (45)

The center of mass or center of momentum frame (CM/CMS) is at rest and the total
momentum is zero. This makes it a suitable choice for solving kinematics problems.

Note: We know that for a collider with head-on collision (θ = 1800)

s = E2
cm = m2

1 +m2
2 + 2(E1.E2 + |p1||p2|) (46)

For relativistic collisions, m1, m2 � E1, E2

E2
cm ' 4E1E2 (47)

For two beams crossing at an angle θ,

E2
cm = 2E1E2(1 + cos θ) (48)

The CM energy available in a collider with equal energies (E) for new particle production
rises linearly with E i.e.

Ecm ' 2E (49)
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For a fixed-target experiment the CM energy rises as the square root of the incident energy:

Ecm '
√

2m2E1 (50)

Hence the highest energy available for new particle production is achieved at collider
experiments. For example, at SPS fixed-target experiment to achieve a CM energy of 17.3
AGeV the required incident beam energy is 158 AGeV.

Problem: Suppose two identical particles, each with mass m and kinetic energy T ,
collide head-on. What is their relative kinetic energy, T ′ (i.e. K.E. of one in the rest frame
of the other). Apply this to an electron-positron collider, where K.E. of electron (positron)
is 1 GeV. Find the K.E. of electron if positron is at rest (fixed target). Which experiment
is preferred, a collider or a fixed-target experiment?

Note: Most of the times the energy of the collision is expressed in terms of nucleon-
nucleon center of mass energy. In the nucleon-nucleon CM frame, two nuclei approach each
other with the same boost factor γ. The nucleon-nucleon CM is denoted by

√
sNN and is

related to the total CM energy by
√
s = A

√
sNN (51)

This is for a symmetric collision with number of nucleons in each nuclei as A. The colliding
nucleons approach each other with energy

√
sNN/2 and with equal and opposite momenta.

The rapidity of the nucleon-nucleon center of mass is
yNN = 0 and taking m1 = m2 = mp, the projectile and target nucleons are at equal and
opposite rapidities.

yproj = − ytarget = cosh−1

√
sNN

2mp

= ybeam. (52)

Note: Lorentz Factor

γ =
E

M
=

√
s

2A mp

=
A
√
sNN

2A mp

=

√
sNN

2 mp

=
ECMS
beam

mp

(53)

where E and M are Energy and Mass in CMS respectively. Assuming mass of a proton,
mp ∼ 1 GeV, the Lorentz factor is of the order of beam energy in CMS for a symmetric
collision.

2. For Asymmetric Collisions (A+B)

During the early phase of relativistic nuclear collision research, the projectile mass was
limited by accelerator-technical conditions (38Ar at the Bevalac, 28Si at the AGS, 32S at the
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FIG. 3: A plot to demonstrate how the Lorentz Factor increases with collision energy for a sym-

metric collision. Center of mass system is compared with fixed target experiment.

SPS). Nevertheless, collisions with mass ≈ 200 nuclear targets were investigated. Analysis of
such collisions is faced with the problem of determining an ”effective” center of mass frame,
to be evaluated from the numbers of projectile and target participant nucleons, respectively.
Their ratio - an thus the effective CM rapidity - depends on impact parameter. Moreover,
this effective CM frame refers to soft hadron production only, whereas hard processes are
still referred to the frame of nucleon-nucleon collisions. The light projectile on heavy target
kinematics are described in [17].

The center of mass energy of a collision of two different systems with charge Z1, Z2 and
atomic numbers A1, A2 with Z = A = 1, for a proton is

√
sNN ' 2

√
spp +

√
spp

√
Z1Z2

A1A2

(54)

where sub-index NN refers to the energy per nucleon inside the colliding nucleus and
√
spp

is the corresponding energy in pp collisions. The rapidity shift in non-symmetric systems is
given by

∆y ' 1

2
ln

[
Z1A2

Z2A1

]
(55)

This is due to the fact that the center-of-mass frame of the pA collision doesn’t coincide
with the laboratory center-of-mass frame. The rapidity shift in p+ Pb collision is

∆y ' 1

2
ln

[
Z1A2

Z2A1

]
=

1

2
ln

[
82× 1

1× 208

]
= −0.465

Hence ∆y = ±0.465 for p+Pb collisions, flipping the beams. This rapidity shift need to be
taken into account for the comparison with Pb+Pb data.
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p1 = (E1,
p1)

p2 = (E2,
p2 )

θ 

FIG. 4: The Laboratory system: two particle kinematics.

At LHC, the maximum proton beam energy is 7 TeV, while the maximum Pb beam
energy is 2.75 TeV,

√
s = 8.775 TeV. The difference in available energy is due to the charge-

to-mass ratio, Z/A. More is the number of neutrons in the nucleus, difficult it is to accelerate
to higher energies. Because of different energies, the two beams will also not have the same
rapidity. For the proton beam yp = 9.61 and for the Pb beam it is yPb = 8.67. Thus the
center of the collision is shifted away from ycm = 0 by ∆ycm = (yp − yPb)/2 = 0.47.

G. The Energy and Velocity of the Center of Momentum

As discussed in Ref. [2], lets consider a Lorentz system- call it the laboratory system
(frame), with two particles with masses, m1 and m2 and four momenta p1 and p2, respec-
tively as shown in Fig. 4.

What is the centre of mass energy, E ?

1. It is independent of the Lorentz system, where p1 and p2 are defined.

2. It must be possible to have an answer in terms of the three invariants, namely
p2

1 = m2
1 and p2

2 = m2
2

and [p1p2 or (p1 + p2)2 or (p1 − p2)2].

The answer would be trivial in the center of momentum (mass) frame itself. We use asterisk
(*) in the CM frame to distinguish that from the laboratory frame.

In CM frame,

(~p1
∗ + ~p2

∗) = 0

=⇒ p1 + p2 = (E∗1 + E∗2 ,~0)

and E∗ = E∗1 + E∗2 (56)
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Hence,

(E∗)2 = (E∗1 + E∗2)2

= (p∗1 + p∗2)2

= (p1 + p2)2. (57)

This is because (p1 + p2)2 is invariant.

Let us define the total mass M of the system as the square of the total 4-momentum as:

M2 = (p1 + p2)2 = P 2 = (E∗)2 = (E1 + E2)2 − (p1 + p2)2 = Invariant

Kinematically, for the given system, the two particles p1 and p2 are equivalent to one
single particle with 4-momentum P and mass M = ECM. Generalizing this, one can
consider these individual particles to represent a system of particles.

Further, we know

~p = m~vγ, and E = mγ , where γ = 1√
1−β2

.

Hence, the 4-momentum of the two-particle system is given by:

~P = M~βγ

E = Mγ.
Using the above, one obtains:

βCM =
~P

E
(58)

=
(~p1 + ~p2)

(E1 + E2)
, (59)

is the velocity of the CM seen from the laboratory system.

γCM =
1√

1− β2

=
E

M
(60)

=
E1 + E2√

(E1 + E2)2 − (~p1 + ~p2)2

=
E1 + E2

ECM

, (61)

is the Lorentz factor or the Lorentz boost of the CM. In general, the Lorentz factor of
the CM is the ratio of the sum of the energies of the particles in the laboratory system and
the energy of the CM.
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H. The Energy, Momentum and Velocity of one particle as seen from the rest

system of another one

Lets assume that we sit on particle 1, which is in motion. What will be the energy of
particle 2, for us?

The answer to this question must always be the same, irrespective of the Lorentz system
we start with. It is thus expressible by the invariants discussed in the preceding subsection
(point-2), where the last two variables are the well-known Mandelstam’s s and t variables.

Let E21: is the energy of particle 2, if we look at it sitting on particle 1, which then
appears to be at rest for us.
E21 = E2, in the system where ~p1 = 0. One needs to write E21 in terms of the invariants
available in this problem.

Now, p1p2 = E1E2 − ~p1. ~p2 = m1E2 (since ~p1 = 0).

Hence, E21 = E2 = p1p2
m1

.

Note that the RHS is already in an invariant form.

|~p21|2 = E2
21 −m2

2 =
(p1p2)2−m2

1m
2
2

m2
1

.

If p1 and p2 are the momentum 4-vectors of any two particles in any Lorentz system, then

E21 =
p1p2

m1

|~p21|2 =
(p1p2)2 −m2

1m
2
2

m2
1

(p1p2 ≡ E1E2 − ~p1~p2)

v2
21 =

|~p21|2

E2
21

=
(p1p2)2 −m2

1m
2
2

(p1p2)2
(62)

The above three equations give the energy, momentum and velocity of particle 2, as seen
from particle 1. The velocity v21 is the relative velocity, which is symmetric in 1 and 2. Note
here that all these expressions are invariant and can be evaluated in any Lorentz system.

I. The Energy, Momentum, and Velocity of a Particle as seen from the CM System

This problem is now like all the above quantities are as seen from a fictitious particle M ,
called the “center-of-momentum-particle”, whose 4-momentum is

P = p1 + p2 (63)

We need to apply formulae (Eq. 62) with p1 replaced by P and p2 by the 4-momentum
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of that particle whose energy, momentum and velocity, we like to determine. From Eq. 62,

E∗1 =
Pp1

M

|~p∗1|2 =
(Pp1)2 −M2m2

1

M2

v∗21 =
(Pp1)2 −M2m2

1

(Pp1)2
(64)

This is by using Eq. 63 and by using

p1p2 =
1

2
[(p1 + p2)2 − p2

1 − p2
2]

=
1

2
(M2 −m2

1 −m2
2), (65)

one obtains

E∗1 =
M2 + (m2

1 −m2
2)

2M
(66)

E∗2 =
M2 − (m2

1 −m2
2)

2M
(67)

E∗1 + E∗2 = M (68)

|~p ∗|2 = |~p ∗1 |2 = |~p ∗2 |2

=
M4 − 2M2(m2

1 +m2
2) + (m2

1 −m2
2)

4M2

=
[M2 − (m1 +m2)2] [M2 − (m1 −m2)2]

4M2
(69)

v ∗1
2 =

(
|~p ∗|
E∗1

)2

. (70)

Here, E∗1 , v
∗

1 are energy and velocity of particle 1, as seen from their common CM system
and M2 = P 2 = (p1 + p2)2 is the square of the total mass. The above equations give the
energy, momenta and the velocities of two particles m1 and m2 for which

M → m1 +m2

J. Description of Nucleus-Nucleus Collisions in terms of Light-Cone Variables

In relativistic nucleus-nucleus collisions, it is convenient to use kinematic variables which
take simple forms under Lorentz transformations for the change of frame of reference. A few
of them are the light cone variables x+ and x−, the rapidity and pseudorapidity variables,
y and η. A particle is characterized by its 4-momentum, pµ = (E,p). In fixed target
and collider experiments where the beam(s) define reference frames, boosted along their
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FIG. 5: Description of heavy-ion collisions in one space (z) and one time (t) dimension.

direction, it is important to express the 4-momentum in terms of more practical kinematic
variables.

Figure 5 shows the collision of two Lorentz contracted nuclei approaching each other with
velocities nearly equal to velocity of light. The vertical axis represents the time direction
with the lower half representing time before the collision and the upper half, time after the
collision. The horizontal axis represents the spatial direction. Both the nuclei collide at
(t, z) = (0, 0) and then the created fireball expands in time going through various processes
till the created particles freeze-out and reach the detectors. The lines where t2 − z2 = 0
(note that

√
t2 − z2 ≡ τ , τ being the proper time of the particle) along the path of the

colliding nuclei define the light cone. The upper part of the light-cone, where t2 − z2 > 0,
is the time-like region. In nucleus-nucleus collisions, particle production occurs in the upper
half of the (t, z)-plane within the light-cone. The region outside the light cone for which
t2 − z2 < 0 is called space-like region. The space-time rapidity is defined as

ηs =
1

2
ln

(
t+ z

t− z

)
(71)

It could be seen that ηs is not defined in the space-like region. It takes the value of positive
and negative infinity along the beam directions for which t = ±z respectively. A particle is
”light-like” along the beam direction. Inside the light-cone which is time-like, ηs is properly
defined.

For a particle with 4-momentum p (p0,pT, pz), the light-cone momenta are defined by

p+ = p0 + pz (72)

p− = p0 − pz (73)

p+ is called “forward light-cone momentum” and p− is called “backward light-cone momen-
tum”.
For a particle travelling along the beam direction, has higher value of forward light-cone
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momentum and travelling opposite to the beam direction has lower value of forward light-
cone momentum. The advantages of using light-cone variables to study particle production
are the following.
1. The forward light-cone momentum of any particle in one frame is related to the forward
light-cone momentum of the same particle in another boosted Lorentz frame by a constant
factor.
2. Hence, if a daughter particle c is fragmenting from a parent particle b, then the ratio of
the forward light-cone momentum of c relative to that of b is independent of the Lorentz
frame.
Define

x+ =
pc0 + pcz
pb0 + pbz

(74)

=
c+

b+

.

The forward light-cone variable x+ is always positive because c+ can’t be greater than b+.
Hence the upper limit of x+ is 1. x+ is Lorentz invariant.
3. The Lorentz invariance of x+ provides a tool to measure the momentum of any particle
in the scale of the momentum of any reference particle.

K. Pictorial Representation of Detector System

!

FIG. 6: A schematic decomposition of particle momentum ~p (in CM frame) into parallel and

longitudinal components. Note the angle of inclination θ of ~p and the azimuthal angle φ of p⊥ [3].

In an collider experimental environment, a particle is emitted from the collision point
making a polar angle θ with the collision point. When the momenta of the particles are
determined by a tracking detector, the (pseudo)-rapidity and azimuthal angles are given by
y = tanh−1vz = tanh−1 pz

E
= tanh−1 pz√

p2x+p2y+p2z+m2
0

and φ = tan−1 py
px

.
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The polar angle θ is given by

θ = cos−1 pz
|~p|

= tan−1 | ~pT |
pz

.

Pictorially, these are shown in the Figure 6. A detector plane is spanned by (η, φ), with
η decreasing while going away from the beam axis in annular rings and φ is scanned making
an angle with the beam axis and increasing it anti-clock-wise, as is shown in the picture.

L. The Rapidity Variable

One of the important tasks in hand is to introduce key kinematic variables that relate
particle momentum to the dynamics that is occurring in heavy-ion collisions. It is essen-
tially the convenience of working in center-of-momentum system, we need to introduce the
observable rapidity. To do so, let’s proceed as follows: The co-ordinates along the beam
line (conventionally along the z-axis) is called longitudinal and perpendicular to it is called
transverse (x-y). The 3-momentum can be decomposed into the longitudinal (pz) and the
transverse (pT ), pT being a vector quantity which is invariant under a Lorentz boost along
the longitudinal direction. The variable rapidity “y” is defined by

y =
1

2
ln

(
E + pz
E − pz

)
(75)

= ln

(
E + pz
mT

)
(76)

It is a dimensionless quantity related to the ratio of forward light-cone to backward light-
cone momentum. The rapidity changes by an additive constant under longitudinal Lorentz
boosts.

For a free particle which is on the mass shell (for which E2 = p2 +m2), the 4-momentum
has only three degrees of freedom and can be represented by (y,pT ). (E,pT ) could be
expressed in terms of (y,pT ) as

E = mT cosh y (77)

pz = mT sinh y (78)

mT being the transverse mass which is defined as

m2
T = m2 + p2

T . (79)

The advantage of rapidity variable is that the shape of the rapidity distribution remains
unchanged under a longitudinal Lorentz boost. When we go from CMS to LS, the rapidity
distribution is the same, with the y-scale shifted by an amount equal to ycm. This is shown
below.

1. Rapidity of Center of Mass in the Laboratory System

The total energy in the CMS system is Ecm =
√
s. The energy and momentum of the

CMS in the LS are γcm
√
s and βcmγcm

√
s respectively. The rapidity of the CMS in the LS
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is

ycm =
1

2
ln

[
γcm
√
s+ βcmγcm

√
s

γcm
√
s− βcmγcm

√
s

]
=

1

2
ln

[
1 + βcm
1− βcm

]
(80)

It is a constant for a particular Lorentz transformation.

2. Relationship between Rapidity of a particle in LS and rapidity in CMS

The rapidities of a particle in the LS and CMS of the collision are respectively, y =
1
2
ln
(
E+pz
E−pz

)
and y∗ = 1

2
ln
(
E∗+p∗z
E∗−p∗z

)
. For a particle travelling in longitudinal direction, the

Lorentz transformation of its energy and momentum components give[
E∗

P ∗L

]
=

[
γ −γβ
−γβ γ

]
·
[
E
PL

]
, P ∗T = PT (81)

where PL and PT are the longitudinal and transverse components of ~P , which are parallel
and perpendicular to β, respectively. Hence, the inverse Lorentz transformations on E and
pz give

y =
1

2
ln

[
γ(E∗ + βp∗z) + γ(βE∗ + p∗z)

γ(E∗ + βp∗z)− γ(βE∗ + p∗z)

]
=

1

2
ln

[
E∗ + p∗z
E∗ − p∗z

]
+

1

2
ln

[
1 + β

1− β

]
(82)

⇒ y = y∗ + ycm. (83)

Hence the rapidity of a particle in the laboratory system is equal to the sum of the ra-
pidity of the particle in the center of mass system and the rapidity of the center of mass
in the laboratory system. It can also be state that the rapidity of a particle in a moving
(boosted) frame is equal to the rapidity in its own rest frame minus the rapidity of the
moving frame. In the non-relativistic limit, this is like the subtraction of velocity of the
moving frame. However, this is not surprising because, non-relativistically, the rapidity y
is equal to longitudinal velocity β. Rapidity is a relativistic measure of the velocity. This
simple property of the rapidity variable under Lorentz transformation makes it a suitable
choice to describe the dynamics of relativistic particles. The simple shape invariance nature
of rapidity spectra brings its importance in the analysis of particle production in nuclear
collisions. For instance, in fixed-target experiments, we can study particle spectra using y as
a variable without making an explicit transformation to the CM frame of reference and from
the rapidity spectra, we deduce the point of symmetry corresponding to the CM rapidity. In
symmetric collisions with fixed targets, the CM frame is located in the middle between the
rapidities of the projectile and target i.e. ycm = yproj/2. In this case, the particle rapidity
spectrum must be symmetric around ycm. This allows for complementing measured particle
spectra: if these are available for, e.g. y ≥ ycm, a reflection at the symmetry point ycm gives
us the part of the spectrum with y ≤ ycm, for which an experimental measurement is absent.
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FIG. 7: A plot of beam rapidity as a function of center of mass energy.

3. Relationship between Rapidity and Velocity

Consider a particle travelling in z-direction with a longitudinal velocity β. The energy E
and the longitudinal momentum pz of the particle are

E = γm (84)

pz = γβm (85)

pz = βE (86)

where m is the rest mass of the particle. Hence the rapidity of the particle travelling in
z-direction with velocity β is

yβ =
1

2
ln

[
E + pz
E − pz

]
=

1

2
ln

[
γm+ γβm

γm− γβm

]
=

1

2
ln

[
1 + β

1− β

]
(87)

Note here that yβ is independent of particle mass. A particle is said to be relativistic in
nature if γ >> 1, β ≈ 1 and E ≈ p. In other words, the energy of the particle is much
higher than its rest mass i.e. E >> m0 and hence the energy and total momentum of the
particle are comparable. In the non-relativistic limit when β is small, expanding yβ in terms
of β leads to

yβ = β + O(β3) (88)

Thus the rapidity of the particle is the relativistic realization of its velocity.

4. Beam Rapidity

We know,
E = mT cosh y, pz = mT sinh y and m2

T = m2 + p2
T .
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For the beam particles, pT = 0.
Hence, E = mb cosh yb and pz = mb sinh yb,
where mb and yb are the rest mass and rapidity of the beam particles.

yb = cosh−1 (E/mb) (89)

Note that Eq. 89 is used for fixed target experiment with E as the energy of individual
beam particles, neglecting the rest mass. For example, for SPS beam energy of 158 AGeV,
E = 158 GeV. This leads to yb = 5.82 in fixed target framework. Now when we convert Eq.
89 for a collider system, we get

yb = cosh−1 (E/mb)

= cosh−1

[√
sNN

2 mp

]
(90)

⇒ yb = ln(
√
sNN/mp) (91)

Now, for the above SPS beam energy of 158 AGeV, the equivalent center of mass energy
per nucleon is,

√
sNN = 17.3 GeV. By using Eq. 91, we get yb = 2.91. This makes sense to

us, as in a collider experiment both the beams come in opposite directions with equal beam
rapidities.

Further,
yb = sinh−1 (pz/mb) (92)

In terms of the beam velocity, beam rapidity can be expressed as

yb = tanh−1 (pz/E) = tanh−1 β (93)

Here mp is the mass of a proton. Note that the beam energy E =
√
sNN/2 for a symmetric

collider.

Furthermore, it could be shown that: yb = ∓ ln(
√
sNN/mp) = ∓ ymax

Example For the nucleon-nucleon center of mass energy
√
sNN = 9.1 GeV, the beam

rapidity yb = cosh−1
(

9.1
2×0.938

)
= 2.26

For p+p collisions with lab momentum 100 GeV/c,

yb = sinh−1
(
pz
mb

)
= sinh−1

(
100

0.938

)
= 5.36

and for Pb+Pb collisions at SPS with lab energy 158 AGeV, yb = 2.91.

TABLE I: Table of collision energy,
√
sNN Vs the beam rapidity, yb.

√
sNN (GeV) 7.7 9.1 11.5 17.3 19.6 27.0 39.0 62.4 130 200 900 2360 2760 5520 7000 14000

yb 2.10 2.27 2.50 2.91 3.03 3.35 3.72 4.19 4.93 5.36 6.86 7.83 7.98 8.68 8.91 9.61
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5. Rapidity of the CMS in terms of Projectile and Target Rapidities

Let us consider the beam particle “b” and the target particle “a”.
bz = mT sinh yb = mb sinh yb. This is because pT of beam particles is zero. Hence

yb = sinh−1 (bz/mb). (94)

The energy of the beam particle in the laboratory frame is
b0 = mT cosh yb = mb cosh yb.
Assuming target particle a has longitudinal momentum az, its rapidity in the laboratory
frame is given by

ya = sinh−1 (az/ma) (95)

and its energy
a0 = ma cosh ya. (96)

The CMS is obtained by boosting the LS by a velocity of the center-of-mass frame βcm such
that the longitudinal momentum of the beam particle b∗z and of the target particle a∗z are
equal and opposite. Hence βcm satisfies the condition,
a∗z = γcm(az − βcma0) = − b∗z = − γcm(bz − βcmb0), where γcm = 1√

1−β2
cm

. Hence,

βcm =
az + bz
a0 + b0

. (97)

We know the rapidity of the center of mass is

ycm =
1

2
ln

[
1 + βcm
1− βcm

]
(98)

Using equations 97 and 98, we get

ycm =
1

2
ln

[
a0 + az + b0 + bz
a0 − az + b0 − bz

]
. (99)

Writing energies and momenta in terms of rapidity variables in the LS,

ycm =
1

2
ln

[
ma cosh ya +ma sinh ya +mb cosh yb +mb sinh yb
ma cosh ya −ma sinh ya +mb cosh yb −mb sinh yb

]
=

1

2
(ya + yb) +

1

2
ln

[
ma e

ya +mb e
yb

ma eyb +mb eya

]
(100)

For a symmetric collision (for ma = mb),

ycm =
1

2
(ya + yb) (101)

Rapidities of a and b in the CMS are

y∗a = ya − ycm = − 1

2
(yb − ya) (102)

y∗b = yb − ycm =
1

2
(yb − ya). (103)

Given the incident energy, the rapidity of projectile particles and the rapidity of the target
particles can thus be determined. The greater is the incident energy, the greater is the
separation between the projectile and target rapidity.
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Central Rapidity The region of rapidity mid-way between the projectile and target
rapidities is called central rapidity.
Example In p+p collisions at a laboratory momentum of 100 GeV/c, beam rapidity yb =
5.36, target rapidity ya = 0 and the central rapidity ≈ 2.7.

6. Mid-rapidity in Fixed target and Collider Experiments

In fixed-target experiments (LS), ytarget = 0.
ylab = ytarget + yprojectile = ybeam Hence mid-rapidity in fixed-target experiment is given
by,

yLSmid = ybeam/2. (104)

In collider experiments (center of mass system),
yprojectile = − ytarget = yCMS = ybeam/2.
Hence, mid-rapidity in CMS system is given by

yCMS
mid = (yprojectile + ytarget)/2 = 0. (105)

This is valid for a symmetric energy collider. The rapidity difference is given by yprojectile −
ytarget = 2yCMS and this increases with energy for a collider as y increases with energy.

7. Light-cone variables and Rapidity

Consider a particle having rapidity y and the beam rapidity is yb. The particle has
forward light-cone variable x+ with respect to the beam particle

x+ =
pc0 + pcz
pb0 + pbz

=
mc
T

mb
ey−yb (106)

where mc
T is the transverse mass of c. Note that the transverse momentum of the beam

particle is zero. Hence,

y = yb + ln x+ + ln

(
mb

mc
T

)
(107)

Similarly, relative to the target particle a with a target rapidity ya, the backward light-cone
variable of the detected particle c is x−. x− is related to y by

x− =
mc
T

mb
eya−y (108)

and conversely,

y = ya − ln x− − ln
(
ma

mc
T

)
. (109)

In general, the rapidity of a particle is related to its light-cone momenta by

y =
1

2
ln

(
p+

p−

)
(110)

Note that in situations where there is a frequent need to work with boosts along z-direction,
it’s better to use (y,pT) for a particle rather than using it’s 3-momentum, because of the
simple transformation rules for y and pT under Lorentz boosts.
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8. The Maximum Accessible Rapidity in an Interaction

	
  

FIG. 8:
√
sNN (vertical axis) of various accelerators as a function of the projectile and target

rapidities seen from the CM frame. Shaded areas: energy ranges accessible at various accelerators

[3].

We know the variable rapidity “y” of a particle is defined by Eqn. 76:

y =
1

2
ln

(
E + pz
E − pz

)
. (111)

This corresponds to

tanh(y) =
pz
E

(112)

where, pz is the longitudinal momentum along the direction of the incident particle, E is
the energy, both defined for a given particle. The accessible range of rapidities for a given
interaction is determined by the available centre-of-mass energy and all participating parti-
cles’ rest masses. One usually gives the limit for the incident particle, elastically scattered
at zero angle:

|y|max = ln[(E + pz)/m]

= ln[γ + γβ]

= ln[γ +
√
γ2 − 1]

' cosh−1γ, if γ � 1 (113)

with all variables referring to the through-going particle given in the desired frame of
reference (e.g. in the centre of mass). A Lorentz boost β along the direction of the incident
particle adds a constant, ln[γ + γβ], to the rapidity. Rapidity differences, therefore, are
invariant to a Lorentz boost. Statistical particle distributions are flat in y for many physics
production models. Note here that ∂y

∂pz
= 1/E.
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Furthermore,

γ =
Ebeam
mp

(114)

and for symmetric collision,

Ebeam =

√
sNN
2
⇒ γ =

√
sNN

2mp

(115)

Hence,

ymax = cosh−1

[√
sNN

2mp

]
= cosh−1

[
Elab
Amp

]
⇒ ymax = yb = ln

[√
sNN
mp

]
(116)

Note that the maximum accessible rapidity is independent of the collision species for a
symmetric collider and only depends on the center of mass energy.

Examples:
(a) For RHIC top energy,

√
sNN = 200 GeV, γ = Ebeam/mp = 106.609. Hence y|max = 5.36.

For LHC, center of mass energy of 5.5 TeV (γ = 2931.768), y|max = 8.67.

(b) ylabbeam = 5.8 for Elab = 158 AGeV and 4.4 for Elab = 40 AGeV.

M. The Pseudorapidity Variable

Let us assume that a particle is emitted at an angle θ relative to the beam axis. Then
its rapidity can be written as

y = 1
2
ln
(
E+PL

E−PL

)
= 1

2
ln

[√
m2+p2+p cos θ√
m2+p2−p cos θ

]
. At very high energy, p� m and hence

y =
1

2
ln

[
p+ p cos θ

p− p cos θ

]
= −ln tan θ/2 ≡ η (117)

η is called the pseudorapidity. Hence at very high energy,

y ≈ η = − ln tan θ/2. (118)

In terms of the momentum, η can be re-written as

η =
1

2
ln

[
|p|+ pz
|p| − pz

]
. (119)

θ is the only quantity to be measured for the determination of pseudorapidity, independent
of any particle identification mechanism. Pseudorapidity is defined for any value of mass,
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FIG. 9: A plot of pseudorapidity variable, η as a function of the polar angle, θ.

FIG. 10: As angle increases from zero, pseudorapidity decreases from infinity.

momentum and energy of the collision. This also could be measured with or without mo-
mentum information which needs a magnetic field. A plot of pseudorapidity as a function
of the polar angle, θ is shown in Fig. 9. Table II shows the values of η corresponding to
the polar angle of emission a particle. One speaks of the ”forward” direction in a collider
experiment, which refers to regions of the detector that are close to the beam axis, at high
|η|. The difference in the rapidity of two particles is independent of Lorentz boosts along the
beam axis. Pseudorapidity is odd about θ = 90 degrees. In other words, η(θ) = −η(180−θ).

TABLE II: Table of pseudorapidity, η Vs the polar angle, θ.

θ 0 5 10 20 30 45 60 80 90 100 110 ... 175 180

η ∞ 3.13 2.44 1.74 1.32 0.88 0.55 0.175 0 −0.175 −0.55 ... −3.13 -∞
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FIG. 11: The mid-rapidity dNch/dη for Au+Au collisions at
√
sNN = 200 GeV [6].

1. Change of variables from (y,pT ) to (η,pT )

By equation 119,

eη =

√
|p|+ pz
|p| − pz

(120)

e−η =

√
|p| − pz
|p|+ pz

(121)

Adding both of the equations, we get

|p| = pT cosh η (122)

pT =
√
|p|2 − p2

z. By subtracting the above equations, we get

pz = pT sinh η (123)

Using these equations in the definition of rapidity, we get

y =
1

2
ln

[√
p2
T cosh

2 η +m2 + pT sinh η√
p2
T cosh

2 η +m2 − pT sinh η

]
(124)

Similarly η could be expressed in terms of y as,

η =
1

2
ln

[√
m2
T cosh

2 y −m2 +mT sinh y√
m2
T cosh

2 y −m2 −mT sinh y

]
(125)

The distribution of particles as a function of rapidity is related to the distribution as a
function of pseudorapidity by the formula

dN

dηdpT
=

√
1− m2

m2
T cosh

2 y

dN

dydpT
. (126)
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In the region y � 0, the pseudorapidity distribution (dN/dη) and the rapidity distribution
(dN/dy) which are essentially the pT -integrated values of dN

dηdpT
and dN

dydpT
respectively, are

approximately the same. In the region y ≈ 0, there is a small “depression” in dN/dη dis-
tribution compared to dN/dy distribution due to the above transformation. At very high
energies where dN/dy has a mid-rapidity plateau, this transformation gives a small dip in
dN/dη around η ≈ 0 (see Figure 11). However, for a massless particle like photon, the
dip in dN/dη is not expected (which is clear from the above equation). Independent of the
frame of reference where η is measured, the difference in the maximum magnitude of dN/dη
appears due to the above transformation. In the CMS, the maximum of the distribution is
located at y ≈ η ≈ 0 and the η-distribution is suppressed by a factor

√
1−m2/ < m2

T >
with reference to the rapidity distribution. In the laboratory frame, however the maxi-
mum is located around half of the beam rapidity η ≈ yb/2 and the suppression factor is√

1−m2/ < m2
T > cosh2 (yb/2), which is about unity. Given the fact that the shape of the

rapidity distribution is independent of frame of reference, the peak value of the pseudora-
pidity distribution in the CMS frame is lower than its value in LS. This suppression factor
at SPS energies is ∼ 0.8 − 0.9.

It’s to note here again that the conversion of rapidity to pseudorapidity phase space is
associated with a Jacobian J(y, η), which is given by the right hand side multiplier of Eqn.
126. This depends on the momentum distribution of the produced particles. In the limit
of rest mass of the particles being much smaller than their momenta, J(y, η) = 1. The
value of the Jacobian is smaller at LHC energies, compared to that at RHIC energies, as
the average transverse momentum of particles increases with beam energy. As measured by
the PHENIX experiment, for central Au+Au collisions at

√
sNN = 200 GeV, J(y, η) = 1.25.

Whereas, the corresponding measurement of J(y, η) = 1.09 for Pb+Pb central collisions at√
sNN = 2.76 TeV by the CMS experiment at LHC. Rewriting Eqn. 126 after taking an

integration over pT , one obtains:
dN

dη
= v(y)

dN

dy
(127)

where v is the velocity of the particle. For a hadron of mass m and momentum p, which
emerges at an angle 900 with respect to the beam direction, y = η = 0, the above relationship
becomes,

dN

dη
|η=0 = v

dN

dy
|y=0 (128)

As most of the particles are pions in the final state, with an average momentum of three times
the pion mass, we have v = 0.95. At mid-rapidity, the rapidity-pseudorapidity conversion
hence involves with almost a constant factor. Hence the shape is not affected to a greater
extent. However, when one considers the whole rapidity range, where the particle velocity in
fact becomes a function of the rapidity, the shape of the pseudorapidity distribution (which
is characterized by the width) is different from the rapidity distribution.

Usually, the rapidity spectra are parametrized by the sum of two Gaussian distributions
positioned symmetrically with respect to mid-rapidity [7, 8],

dN

dy
=

〈N〉
2
√

2πσ2

{
exp

[
− 1

2

(
y − y0

σ

)2]
+ exp

[
− 1

2

(
y + y0

σ

)2]}
(129)

where 〈N〉 , σ and y0 are fit parameters. σ is the width of the rapidity distribution.
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Landau’s energy dependent Gaussian rapidity distribution is given by [9, 10]

1

σin

dσ

dy
=

dN

dy

=
N

(2πL)1/2
exp.

(
−y2/2L

)
(130)

with parameters

L =
1

2
ln
(
s/4m2

p

)
= ln γ = ln (

√
sNN/2mp) (131)

where s ≡ squared total center of mass energy. Comparing Eqns. 129 and 130, we get

σy =
√
ln(
√
sNN/2mp) (132)

σy is the width of the rapidity distribution, with mp being the mass of proton. Interest-
ingly, the width of the rapidity distribution is related to the longitudinal flow and velocity
of sound in the medium and hence can probe the equation of state of the produced matter.
However, this is affected by the final state rescattering, which could be understood through
a pT dependent study of σy to disentangle the initial hard scattering from the final state
rescattering. With the assumption that the velocity of sound cs is independent of temper-
ature, the rapidity density in the framework of Landau hydrodynamic model is given by
[11, 12]

dN

dy
= K

s
1/4
NN√

2π σ2
y

exp.

(
− y2

2σ2
y

)
(133)

where

σ2
y =

8

3

c2
s

1− c4
s

ln (
√
sNN/2mp)

⇒ σ2
y =

8

3

c2
s

1− c4
s

ln γ (134)

and K ≡ normalization factor. Inverting the above equation for σ2
y, one can get [13]

c2
s =

−4

3

ln
(√

sNN/2mp

)
σ2
y

+

√√√√[4

3

ln
(√

sNN/2mp

)
σ2
y

]2

+ 1 (135)

For an ideal gas (Landau model prediction) the velocity of sound is, c2
s = 1/3.

However, for a gas of hadrons, c2
s = 1/5. This implies, the expansion of the system

is slower compared to an ideal gas scenario. The equation of state is given by
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FIG. 12: Left: The width of rapidity distributions of π− in central Pb+Pb (Au+Au) collisions as

a function the beam rapidity. The dotted line indicates Landau model predictions with c2
s = 1/3,

while the full line shows a linear fit to data points. Right: Speed of sound as a function of beam

energy showing a softest point at Ebeam = 30A GeV [13].

∂P

∂ε
= c2

s (136)

where, P is the pressure and ε is the energy of the system under consideration. It should be
noted here that when the expansion of the matter proceeds as longitudinal and superimposed
transverse expansions, a rarefaction wave moves radially inwards with the velocity of sound.
The velocity of sound in the medium formed in heavy-ion collisions, when studied as a
function of collision (beam) energy, shows the softest point occurring around Ebeam = 30
AGeV. This could be a signature of deconfinement transition [13].
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Notation [14]

Coordinate Space Momentum Space

(t, x, y, z) → (τ, r, φ, η) (E, px, py, pz) → (mT , ~pT , y)

τ =
√
t2 − z2 = proper time mT =

√
E2 − p2

z = transverse mass

η = tanh−1 z
t

= space-time rapidity y = tanh−1 pz
E

= tanh−1vz = rapidity

Conversely, Conversely,

t = τ cosh η, z = τ sinh η E = mT cosh y, pz = mT sinh y

N. The Invariant Yield

The rapidity variable has the useful property that it transforms linearly under a Lorentz
transformation so that the invariant differential single particle inclusive cross section be-
comes:

Ed3σ

dp3
=

Ed3σ

pTdpTdpLdφ
=

d3σ

pTdpTdydφ
, (137)

where

dy =
dpL
E

(138)

First we proceed to show d3p
E

is Lorentz invariant. The differential of Lorentz boost in
longitudinal direction is given by

dp∗z = γ(dpz − βdE). (139)

Taking the derivative of the equation E2 = p2 +m2, we get

EdE = pzdpz. (140)

Using equations 139 and 140 we get

dp∗z = γ(dpz − β
pzdpz
E

)

=
dpz
E

E∗. (141)

As pT is Lorentz invariant, multiplying pT on both the sides and re-arranging gives

d3p∗

E∗
=

d2pT dpz
E

=
d3p

E
. (142)

In terms of experimentally measurable quantities, d3p
E

could be expressed as

d3p

E
= dpT dy

= pTdpTdφdy (143)

= mTdmTdφdy. (144)



Relativistic Kinematics Raghunath Sahoo 34

The Lorentz invariant differential cross-section Ed3σ
dp3

= Ed3N
dp3

is the invariant yield. In terms

of experimentally measurable quantities this could be expressed as

Ed3σ

dp3
=

1

mT

d3N

dmTdφdy

=
1

2π mT

d2N

dmTdy

=
1

2π pT

d2N

dpTdy
. (145)

To measure the invariant yields of identified particles equation 145 is used experimentally.

O. Inclusive Production of Particles and the Feynman Scaling variable xF

A reaction of type
beam + target −→ A + anything
where A is known is called an “inclusive reaction”. The cross-section for particle production
could be written separately as functions of pT and pL:

σ = f(pT )g(pL). (146)

This factorization is empirical and convenient because each of these factors has simple
parametrizations which fit well to experimental data.

Similarly the differential cross-section could be expressed by

d3σ

dp3
=

d2σ

p2
T

dσ

dpL
(147)

Define the variable

xF =
p∗L

p∗L(max)

⇒ xF =
2p∗L√
s

(148)

xF is called the Feynman scaling variable: longitudinal component of the cross-section
when measured in CMS of the collision, would scale i.e. would not depend on the energy√
s. This is the fraction of maximum allowed longitudinal momentum (−1 ≤ xF ≤ 1)

carried by the particle in the CMS. This is used in comparing the shapes of particle
distributions at different collision energies near the projectile or target rapidity. Instead of
dσ
dp∗L

, dσ
dxF

is measured which wouldn’t depend on energy of the reaction,
√
s. This Feynman’s

assumption is valid approximately. This variable is usually used to compare particle
distribution at different collision energies.

The differential cross-section for the inclusive production of a particle is then written as

d3σ

dxFd2pT
= F (s, xF , pT ) (149)
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Feynman’s assumption that at high energies the function F (s, xF , pT ) becomes asymptot-
ically independent of the energy means:

lims→∞F (s, xF , pT ) = F (xF , pT ) = f(pT ) g(xF )
According to Feynman, the mean number of particles rises logarithmically in the

asymptotic limit of large energies. This in fact applies to any kind of particles:

< N > ∝ ln W ∝ ln
√
s,

where W =
√
s/2, is the beam energy of a symmetric collider. However, these conclusions

are based on phenomenological arguments about the exchange of quantum numbers between
the colliding particles. It was assumed that the number of particles with a given mass and
transverse momentum (pT) in a longitudinal interval pz depends on the energy
E = E(pZ) as

dN

dpz
∼ 1

E
(150)

This means the among all the produced particles, the probability of finding a particle of
kind i with transverse momentum pT, mass m and longitudinal momentum pz is of the form:

fi(pT, xF = pz/W )
dpz
E

d2pT (151)

with E =
√
m2 + p2

T + p2
z being the total energy of the particle under discussion. The

function fi(pT, xF ) denotes the particle distribution. Let’s derive Eqn. 151 to have a hand
on experience.

Rewriting Eqn. 151 in the form of invariant cross section

1

σ
E

d3σ

dpz d2pT
= fi(pT, xF ) (152)

fi factorizes approximately (found experimentally) and a normalization gi is chosen such
that ∫

fi(pT, xF ) d2pT = fi(xF )

∫
gi(pT ) d2pT

= f(xF ) (153)

Here ∫
gi(pT ) d2pT = 1 (154)

Now, integrating Eqn. 152 and applying Eqn. 153, we get∫
1

σ
E

d3σ

dpz d2pT

d3p

E
= < N >

=

∫
fi(pT, xF )

d3p

E

=

∫
fi(xF )

dpz√
W 2x2

F +m2
T

(155)
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On the left hand side we have used the definition of invariant cross section with the average
particle multiplicity < N >, and for mT an effective average pT is used with xF = pz/W .
Hence

< N > =

∫ +1

−1

fi(xF)
dxF√
x2
F +

m2
T

W 2

, (156)

with dxF = dpz
W

.

The integral is symmetric because fi(xF) is symmetric for collisions of identified particles.
For asymmetric collision systems, the integration could be performed separately for negative
and positive xF and yields the same result.

fi(xF) ≤ B is finite and bounded due to energy conservation. Feynman assumed that
for xF = 0 a finite limit is reached.

xF → 0 ⇒ pz
W

=
pz
Elab

→ 0

⇒ Elab →∞

Hence

< N > = 2

∫ 1

0

fi(xF)
dxF√
x2
F +

m2
T

W 2

≤ 2

∫ 1

0

B
dxF√
x2
F +

m2
T

W 2

= 2B ln

[
xF +

√
x2
F +

m2
T

W 2

] ∣∣∣1
0

= 2B ln

[
1 +

√
1 +

m2
T

W 2

]
− 2B ln

(mT

W

)
(157)

In the limit W → ∞, the first term of the above equation could be shown to be constant
and the second term is proportional to ln W . hence, Feynman scaling tells that the average
total multiplicity scales as:

< N > ∝ ln W ∝ ln
√
s (158)

If one considers the maximum reachable rapidity in a collision to increase like ln
√
s

(ymax ∼ ln
√
s) and in addition, particles are evenly distributed in rapidity, it follows that

dN
dy

is independent of
√
s:

dN

dy
= Constant (159)

Feynman’s Assumption: fi(pT, xF) which denotes the particle distribution, becomes
independent of W at high energies. This assumption is known as Feynman Scaling and fi
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is called the scaling function or Feynman function. The variable

xF = pz/W = 2pz/
√
s (160)

is called Feynman-x.

Feynman-x is the ratio of the longitudinal momentum of the particle to the total energy
of the incident particle. Note:

1. dN
dy

= Constant ⇒ Height of the rapidity distribution around mid-rapidity (the

so-called plateau) is independent of collision energy,
√
s.

2. Equivalently, if Feynman scaling holds good, the pseudorapidity density of charged
particles at mid-rapidity i.e. dN

dη
(η = 0) is approximately constant.

Scaling properties of various distributions can also be studied in terms of the scaled
rapidity:

z = y∗/y∗max. (161)

The two scaled variables: xF and z emphasize different kinematic regions: the detailed
structure of the central part of the distribution (i.e. large emission angles) can be better
seen using xF, while the far ”wings” (i.e. small angles) using z.

P. What is a pT or mT Spectrum?

pT spectrum: 1
2πpT

d2N
dy dpT

Vs pT

mT spectrum: 1
2πmT

d2N
dy dmT

Vs mT or (mT −m0)

The invariant yield when plotted as a function of pT or mT or (mT−m0) is called pT or
mT spectrum, respectively. Experimentally at kinetic freeze-out when the elastic collisions
between the final state particles almost cease to happen (in other words the particle mean
free path becomes higher than the system size: size of the produced fireball) then the pT or
mT-spectrum is frozen, which carries the kinetic freeze-out properties of the system. Recall

here that pTdpT = mTdmT .

The distribution of particles as a function of pT is called pT -distribution. Mathematically,

dN

dpT
=

dN

2π |pT |d|pT |
(162)

where dN is the number of particles in a particular pT -bin. People usually plot dN
pT dpT

as a

function of pT taking out the factor 1/2π which is a constant. Here pT is a scalar quantity.
The low-pT part of the pT -spectrum is well described by an exponential function having
thermal origin given by Eqn. (163). However, a QCD-inspired power-law function (given by
Eqn. (164)) seems to provide a better description of the high pT (>∼ 3 GeV/c) region. To
describe the whole range of the pT -spectrum, one uses the Levy function given by Eqn.(165)



Relativistic Kinematics Raghunath Sahoo 38

which has an exponential part to describe low-pT and a power-law function to describe the
hight-pT part which is dominated by hard scatterings (high momentum transfer at early
times of the collision).

1

2πpT

d2N

dy dpT
= A e

−mT
T , (163)

1

2πpT

d2N

dy dpT
= B

(
1 +

pT
p0

)−n
, (164)

1

2πpT

d2N

dy dpT
=

dN

dy

(n− 1)(n− 2)

2πnC[nC +m0(n− 2)]
×

(
1 +

√
p2
T +m2

0 −m0

nC

)−n
, (165)

where A, T,B, p0, n,
dN
dy
, C, and m0 are fit parameters [15]. The inverse slope parameter

of pT -spectra is called the effective temperature (Teff ), which has a thermal contribution
because of the random kinetic motion of the produced particles and a contribution from
the collective motion of the particles. This will be described in details in the section of
freeze-out properties and how to determine the chemical and kinetic freeze-out temperatures
experimentally.

If we look deeper into Eqn. 163, we expect this for a 2-dimensional classical thermalized
fluid at rest. We recall here that Boltzmann distribution ∝ exp.(−βE), where β ≡ 1/T
is the inverse temperature. We use a semi-logarithmic plot (y-axis logarithmic scale) of
N exp. (−βmT ) vs (mT − m0) which happens to be a straight line with slope −β, from
which the effective temperature is extracted. A semi-log plot of N exp. (−βmT ) vs pT is an
approximate straight line if pT � m0.

The most important parameter is then the mean pT which carries the information of the
effective temperature of the system. Experimentally, 〈pT 〉 is studied as a function of dNch

dη

which is the measure of the entropy density of the system. This is like studying the temper-
ature as a function of entropy to see the signal of phase transition. The phase transition is
of 1st order if a plateau is observed in the spectrum signalling the existence of latent heat of
the system (like liquid-vapour phase transition). This was first proposed by L. Van Hove [16].

The average of any quantity A following a particular probability distribution f(A) can
be written as

〈A〉 =

∫
A f(A) dA∫
f(A) dA

. (166)

Similarly,

〈pT 〉 =

∫∞
0
pT ( dN

dpT
) dpT∫∞

0
( dN
dpT

) dpT

=

∫∞
0
pT dpT pT ( dN

pT dpT
)∫∞

0
pT dpT ( dN

pT dpT
)

=

∫∞
0
pT dpT pT f(pT )∫∞
0
pT dpTf(pT )

(167)
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where 2π pT dpT is the phase space factor and the pT -distribution function is given by

f(pT ) =
dN

dpT
=

dN

pTdpT
. (168)

Example Experimental data on pT -spectra are sometimes fitted to the exponential Boltz-
mann type function given by

f(pT ) =
1

pT

dN

dpT
' C e−mT /Teff . (169)

The 〈mT 〉 could be obtained by

〈mT 〉 =

∫∞
0
pT dpT mT exp.(−mT/Teff )∫∞

0
pT dpT exp.(−mT/Teff )

=
2T 2

eff + 2m0Teff +m2
0

m0 + Teff
(170)

⇒ 〈mT 〉 = Teff +m0 +
(Teff )

2

m0 + Teff
(171)

where m0 is the rest mass of the particle. It can be seen from the above expression that for
a massless particle

〈mT 〉 = 〈pT 〉 = 2Teff . (172)

This also satisfies the principle of equipartition of energy which is expected for a massless
Boltzmann gas in equilibrium. However, in experiments the lower (higher) limit of pT is a
finite quantity. In that case the integration will involve an incomplete gamma function.

Q. How is the radial flow measured from pT-spectra?

In central heavy-ion collisions, radial flow is supposed to play a vital role in the thermo-
dynamic expansion of the produced fireball. Radial flow is related to the initial pressure
produced just after the collision. This could be extracted from the analysis of the trans-
verse momentum spectra. Assuming a thermalized non-relativistic plasma (for simplicity),
particle velocity [14]

~v = ~vflow + ~vth, (173)

where ~vflow ≡ transverse velocity of the expanding fluid, which is independent of the
particle species and is the collective component of ~v.

~vflow ≡ thermal component of ~v, which is generated due to random thermal motion of
the quanta of the system.

Hence for a particle of mass m0〈
1

2
m0v

2

〉
=

1

2
m0v

2
flow +

〈
1

2
m0v

2
th

〉
=

1

2
m0v

2
flow +

3

2
kT, (174)
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where T is the temperature of the fluid. Hence the average kinetic energy (K.E) is given by

〈K.E.〉 =
1

2
m0v

2
flow +

3

2
kT

⇒ 3

2
kTeff =

1

2
m0v

2
flow +

3

2
kTth

⇒ Teff = Tth +
1

3
m0v

2
flow (taking k = 1) (175)

Because the final state particle are measured at freeze out (after they stream out to
reach the detectors), the extracted values of ~vflow and T correspond to the instant of freeze
out.

Taking k = 1, in 2-dimension:

Teff = Tth +
1

2
m0v

2
flow , (176)

and in 1-dimension:

Teff = Tth + m0v
2
flow (177)

Note that these formulae are used essentially when the spectra is well described by
an exponential function (low-pT regime). However, when one goes to high-pT regime,
the following formula could be used for extracting the radial flow from the pT or mT-spectra.

Teff = Tth

√
1 + vflow
1− vflow

(178)
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