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Abstract

The flow-field and solute transport through and around a porous cylinder is investigated numerically. The range of Reynolds number (based
on the cylinder diameter and the uniform sinking rate of the cylinder) considered here is between 1 and 40 with Darcy number (Da) in the
range 10−6 �Da�1.5 and porosity in the range 0.629���0.999. The motivation of the present study is the application of flow through
porous cylinder extensively applied in nuclear biological chemical filters as well as reduction of carbon fines in filtered water. The influence
of Da on the drag coefficient, separation angle, recirculation length, streamline and vorticity pattern are investigated. The drag ratio, defined
as the ratio of drag coefficient of porous cylinder to that of solid cylinder, is found to approach zero from unity as Da is increased from 10−6

to 1.5. The separation point shifts towards the rear stagnation point as Da is increased. The time evolution of the solutal field at different
Reynolds number and Darcy number is presented. A long slender concentration plume is found to evolve from the cylinder with decreasing
concentration at the outer edge.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When a unidirectional flow encounters a porous cylinder,
a complex flow field develops partially through and partially
around the cylinder. The prediction of the flow rate passing
through and flowing around the cylinder is not straight forward
and depends on many factors such as the physical properties of
the medium in question.

These flows occur in many practical applications and are
important in different environmental issues. A closely related
application is in the design of the nuclear biological chem-
ical (NBC) filters allowing flow through a porous cylinder.
NBC—filters are extensively used for the chemical, pharmaceu-
tical and medical industries, where protection from dust/particle
exposure is critical.

A direct link to flow through porous cylinder is given in a
gas-cooled nuclear reactor where the nuclear fuel is separated
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from the rapidly circulating coolant by a porous graphite septum
with a narrow gap between fuel and septum (Somasundaram
and Mysels, 1975).

Apart from this, there are a series of related problems with
different geometries such as seepage from streams bounded
by porous banks, problems of leakage into aquifers and the
displacement of oil from sandstones by shalewater influx
and, recently in microbiology of marine aggregates (Kiorboe
and Thygesen, 2001; Kiorboe et al., 2001). The flow rela-
tive to aggregates composed of small particles has relevance
in several other practical situations, such as, the motion of
clusters of materials in gas–solid reactors, the settling of den-
dritic structures in a molten metal and clusters in fluidized
bed. The study of mobility and diffusivity of porous ag-
gregates is also important in aerosol technology (Vainshtein
et al., 2004).

A recent important application of flow through a porous
cylinder is the use of this system in producing radial flow car-
bon (RFC) filters in the industry. The RFC cartridges are porous
cylindrical rings of porous polyethylene applied for reducing
of carbon fines in filtered water.
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After pioneering work of Baicorov (Von Wolfersdorf and
Mönch, 2000), Von Wolfersdorf investigated the steady po-
tential flow past a circular cylinder with porous surface (Von
Wolfersdorf, 1988). Later, Heier and Von Wolfersdorf (1990)
evaluated the solutions obtained before numerically (Heier and
Von Wolfersdorf, 1990).

Recently, Von Wolfersdorf and Mönch (2000) have studied
the potential flow past a porous circular cylinder. When taking
the Darcy equation for description of the flow inside the porous
cylinder, the complete flow domain could be formulated as a
nonlinear boundary-value problem of Poincarė type.

The problem of flow and concentration distribution around
and through a porous cylinder for low and moderate Reynolds
number range for non-potential flows does not exist in the lit-
erature. This is exactly the focus of the present work.

Several authors have studied the flow past an isolated porous
cylinder or sphere namely, Masliyah and Polikar (1980),
Nandakumar and Masliyah (1982), Adler (1992), Noymer et
al. (1998), Vanni (2000) and Vainshtein et al. (2002, 2004). In
most of those studies the flow field inside the porous bodies
is described by the Darcy equation and the Navier–Stokes
equations usually under creeping flow conditions to model the
flow outside the body. This approach requires an appropriate
boundary condition at the interface of the porous body. How-
ever, in many applications non-Darcian effects including shear
and non-linear effects within the porous matrix and the vis-
cous effects at the interface becomes significant under various
conditions. Hence, for the extension of Darcy equation, the
Brinkman and Forchheimer term are used.

As the solution technique, a single-domain approach is used
which consider the porous layer as a pseudo-fluid and the com-
posite region as a continuum. This leads to a single momentum
equation, namely, a modified Navier–Stokes equation with an
additional Darcy and, eventually, Forchheimer term. The ade-
quate expression of the momentum equation for the fluid or for
the porous medium is retained through the corresponding value
of the permeability. This formulation has been widely used by
several authors (e.g., Beckermann and Viskanta, 1988; Vafai
and Kim, 1989; Basu and Khalili, 1999), since it does not re-
quire any explicit boundary condition at the fluid–porous inter-
face. In single-domain approach the values from both sides of
the interface is used to obtain solutions, and therefore matching
of variable values is inherent in the formulation itself. Thus, the
single-domain approach is doing away with the need for sep-
arate interface conditions. We investigated the Reynolds num-
ber range of up to 40, the Darcy number range of 10−2.10−6

and the porosity range of 0.993–0.629. The range studied be-
low is chosen also having in mind a marine-related applica-
tion for studying sinking porous aggregates. These aggregates
sink at velocities up to 100 m or more per day, and are thus
characterised by Reynolds number up to 20 and porosity above
0.9 (Alldredge and Gotschalk, 1988, 1989). Besides, the flow
around a circular cylinder is steady for Reynolds number below
40 (Braza et al., 1986). The solute distribution in and around the
porous cylinder is described by solving the diffusion–advection
equation. The governing equation of the problem is presented
in Section 2 followed by Section 3 on the numerical method

used. The results and discussion are made in Section 4. In Sec-
tion 5, we present the conclusion.

2. Governing equations

We consider a long cylinder of radius a placed in a uniform
flow (from left to right) with velocity U. A two-dimensional,
laminar, incompressible and steady flow of a fluid with constant
properties is considered. The single-domain approach (Basu
and Khalili, 1999) is adopted in the present analysis.

The fluid velocity averaged to a volume containing fluid only
(V) and the filter velocity (v) are related to each other by the
Dupuit–Forchheimer equation (Nield and Bejan, 1998) by v =
�.V , where � is the porosity. We take the characteristic length
as a and characteristic velocity U with center of the cylinder as
the origin in polar co-ordinates (r, �) and the initial line along
the direction of the uniform stream. The single set of equations
in non-dimensional form can be written as
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Here,

B = Binary constant

{
0 outside the porous cylinder,
1 inside the porous cylinder,

� = Porosity

{
1 outside the porous cylinder,
0 < � < 1 inside the porous cylinder,

� = �/� denotes the viscosity ratio; Re = �U2a/� is the
Reynolds number and Da = k/a2 is the Darcy number. In the
fluid region Da is assumed to take an infinitely large value.

The porosity (�) and the Darcy number (Da) could be related
through the Carman–Kozeny relation (Nield and Bejan, 1998)

k = 1

180

�3d2
p

(1 − �)2 ,

where k is the permeability and dp is the characteristic diameter
of a particle in the porous aggregate, each of which may be of
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100 �m in diameter. The Forchheimer terms in the momentum
equations are obtained based on Nithiarasu et al. (1997).

The dimensionless variables are defined as

� = �, r = r

a
, t = tU

a
, p = p

�U2 ,

u = u

U
, v = v

U
, � = c

ci

,

where u is the cross-radial velocity component, v is the radial
velocity component, � is the dimensionless concentration, ci

is the initial concentration within the porous cylinder, � is the
density, p is the pressure and t is the time. Here, the variables
with bar denotes the dimensional variables.

The mass transport equation valid in both the fluid and the
porous region is given by
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where �= �/�= diffusivity ratio, Sc = 	/�= Schmidt number
and �, � are the diffusivities of � inside the porous and the
fluid layers, respectively. The diffusivity ratio is taken as 1.0.

The governing equations (2)–(4) are subjected to the follow-
ing initial and boundary conditions:

Initial conditions (t = 0):

u = U sin �, v = −U cos � (everywhere),

� =
{

0 in fluid region,

1 in porous region.

Boundary conditions (t > 0):

u = U sin �, v = −U cos �, � = 0 (upstream boundary),

�u

�r
= 0,

�v

�r
= 0,

��

�r
= 0 (downstream boundary).

The coefficient of the drag on the cylinder is given by

CD = Drag force

0.5�U2∞2a
,

CD = CDV
+ CDP

,
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where the subscripts V and P represent the contributions of the
viscous and pressure forces, respectively. pw is the dimension-
less wall pressure and �w is the dimensionless wall vorticity
defined as �w = �a/U . The wall pressure coefficient CP is
obtained as

CP = (p − po + 1
2�U2)/( 1

2�U2)

with po the front stagnation point pressure.

3. Numerical method

The governing equations (1)–(4) are solved numerically us-
ing a finite volume method over a staggered grid system. In the
staggered grid arrangement the velocity components are stored
at the midpoints of the cell sides to which they are normal.
The scalar quantities such as the pressure and concentration are
stored at the center of the cell. The discretized forms of the
governing equations are obtained by integrating over elemental
rectangular cells using finite volume method.

We use a pressure correction-based iterative algorithm SIM-
PLE (Patankar, 1980) for solving the governing equations with
those boundary conditions specified previously. A first-order
implicit scheme is used for discretising the time derivatives.
The pressure link between continuity and momentum is accom-
plished by transforming the continuity equation into a Pois-
son equation for pressure. The Poisson equation implements a
pressure correction for a divergent velocity field. At each time
step the resulting tridiagonal system of algebraic equations are
solved through a block elimination method. A single iteration
consists of sequential solution of

1. An implicit calculation of the r, � momentum equation is
performed.

2. The Poisson equation for pressure correction is solved using
the successive under relaxation method. In this case the
under-relaxation factor is chosen as 0.6.

3. The velocity field at each cell is updated using the pressure
correction.

Iteration at each time step continues until the divergence-
free velocity field is obtained. However, for this purpose the
divergence in each cell is towed below a preassigned small
quantity of �10−5. Using the updated value of the velocity, the
mass transfer equation (4) is solved at each time step through
central difference approximation to obtain � at each cell center.
A time-dependent numerical solution is achieved by advancing
the flow field variables through a sequence of short time steps of
duration �t of 0.005. Further reduction of �t does not produce
any significant difference in drag coefficient (CD).

The parameters such as porosity (�) and permeability (Da)
usually undergo large changes at the interface between the fluid
and the porous layer. In the single-domain approach this be-
comes a major source of numerical difficulty. The harmonic-
mean formulation is used to handle the abrupt change in the
above-mentioned parameters. As the velocity field vary more
rapidly near the interface (r = 1) than elsewhere, a finer grid
distribution is imposed around r = 1.

A series of test runs were made for determining the opti-
mal grid size and the runs were performed with various grid
sizes for two different lengths of the outer boundary (Ld). The
outer boundary is chosen large enough that the influence of the
boundary condition on the wall shear stress is negligible. The
code was tested for four different grid sizes namely 300 × 190,
400 × 241, 440 × 260 and 460 × 271 with the first and second
number being the number of mesh points in the radial and in
the cross-radial direction. We considered a non-uniform grid
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Table 1
Effect of mesh size and external boundary on CD at Re = 40 and Da = 10−6 (� = 0.629)

Case Cell size (�� × �r) Outer boundary (Ld ) Co-efficient of drag (CD) Grid size (m × n)

1. 0.0209 × 0.025 1.562 300 × 190
2. 0.0157 × 0.010 20 1.594 400 × 241
3. 0.0143 × 0.005 1.604 440 × 260
4. 0.0136 × 0.005 1.608 460 × 271
5. 0.0209 × 0.025 1.545 300 × 224
6. 0.0157 × 0.010 30 1.581 400 × 261
7. 0.0143 × 0.005 1.597 440 × 274
8. 0.0136 × 0.005 1.599 460 × 291

-1  0  1

-1

 0

 1

Fig. 1. Grid resolution in and around the cylinder interface at a grid size of
440 × 270.

distribution along the radial direction but a uniform grid is con-
sidered along the �-direction. Grids are stretched through an
arithmetic progression. In the r-direction the distance of the
first grid point from the cylinder surface varies between 0.025
to 0.005. We considered the variation of the outer radius Ld

between 20 and 30 times the radius of the cylinder. Table 1
shows the percentage difference on the drag coefficient (CD)
at various grid sizes at different values of outer boundary (Ld ).
The grid sensitivity analysis is performed for Re = 40 and
Da = 10−6. The percentage difference in CD between the two
grids namely 440 × 260 and 460 × 271 at extent of the outer
domain boundary Ld = 20 is 0.25%. Whereas, at Ld = 30, per-
centage difference in CD between the two grids, 440 × 274
and 460 × 291 is 0.12%. The 440 × 260 grid at Ld = 20 and
440 × 274 grid at Ld = 30 captured the best flow field and the
maximum percentage difference in CD when these two grids
sizes are used is 0.44%. Thus, our grid sensitivity study sug-
gests that the grid-independent results could be achieved using
a 440 × 260 grid at a outer boundary of 20, which took the
least computational time. The grid resolution near the surface
of the porous cylinder for 440 × 260 grid is shown in Fig. 1.

In order to check the accuracy of our method we have com-
pared our results for the flow past a solid cylinder with those of
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Fig. 2. (a) Comparison of wall vorticity and (b) comparison of wall pressure,
for the flow past a solid circular cylinder.

Braza et al. (1986), Fornberg (1980), Dennis and Chang (1970)
and Sucker and Brauer (1975). The dimensionless wall vortic-
ity (�w) and the computed wall pressure coefficient (CP ) is
found to be in good agreement with those of Braza et al. (1986),
Fornberg (1980) and Dennis and Chang (1970) (Figs. 2a, b).
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Fig. 3. Variation of drag coefficient at various Re for Da = 10−6 (�= 0.629),
Da = 10−3 (� = 0.977) and Da = 10−2 (� = 0.993).

Da
10-6 10-5 10-4 10-3 10-2 10-1 100 1010

0.5

1

1.5 Present Computation (Re=1)
Present Computation (Re=10)
Noymer et al.(1998)
Nandakumar and Masliyah (1982)
Masliyah and Polikar (1980)

C
D

r

Fig. 4. Drag ratio at Re = 1, 10 as a function of Da.
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Fig. 5. Separation angle as a function of Re at Da = 10−6 (� = 0.629),
Da = 10−3 (� = 0.977) and Da = 10−2 (� = 0.993).

The computed drag-coefficient (CD) plotted as a function of
Reynolds number compared with the numerical results of Braza
et al. (1986) and empirical data determined by Sucker and
Brauer (1975) is shown in Fig. 3. We see the excellent com-
parisons between the computational and empirical results. We
have also compared our results for the drag ratio CDr (de-
fined as the ratio of drag coefficient for the porous cylinder to
that of solid cylinder), at different Darcy number and porosity
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Fig. 6. Predicted wake-length as a function of Re at Da = 10−6 (� = 0.629),
Da = 10−3 (� = 0.977) and Da = 10−2 (� = 0.993).

at Re = 10 with results of Noymer et al. (1998), Masliyah
et al. (1980) and Nandakumar et al. (1982) and found them in
good agreement (Fig. 4). The angle (�s) at which the external
flow separates from the surface of the solid cylinder compared
with Braza et al. (1986) is depicted in Fig. 5 as a function of
Reynolds number. A good comparison is obtained with those
of Braza et al. (1986) and Dennis and Chang (1970) for the
length of the wake (L/a) formed behind the cylinder (Fig. 6).

4. Results and discussion

The present flow field is governed by four parameters namely,
Reynolds number (Re), Schmidt number (Sc), Darcy number
(Da) and porosity (�). However, the Darcy number and poros-
ity are related through the Carman–Kozeny relation. We have
restricted our study for Re up to 40 and � around 0.9. The flow
field at different values of Re and Da is presented in Figs. 3–12,
whereas the distribution of concentration inside and around the
cylinder is presented in Figs. 13–15.

The variation of the drag coefficient (CD) of the porous cylin-
der at Da = 10−2 with time is shown in Fig. 7 at different Re.
The figure shows that flow field becomes steady after an initial
transition within the range of Reynolds number considered.

The variation of drag coefficient as a function of Reynolds
number (1�Re�40) is shown in Fig. 3 for Da = 10−6, 10−3

and 10−2 in log-scale in both the axes. From the figure it is
evident that the drag coefficient is nearly the same as that of
solid cylinder for Da=10−6 for the range of Reynolds number
considered in this investigation. Thus at Da=10−6 (�=0.629),
even though the void volume is 62.9% of the total volume, the
porous cylinder behaves like a impermeable cylinder. The drag
coefficient at Da=10−3 and 10−2 are found to be less than the
Da=10−6 case. At low Reynolds number (Re� 5) the percent-
age difference in CD for Da = 10−2 with that of solid cylinder
is almost found to be independent of Reynolds number. For
example, the percentage difference in drag coefficient at Re=1
and 5 with that of solid cylinder at Da = 10−2 is 7.13% and
7.10%, respectively. However, CD reduces monotonically as Re
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Fig. 7. Time evolution of drag coefficient for different Re at Da = 10−2

(� = 0.993).
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Fig. 8. Onset of flow separation at different Da.

increases from 5 to 40 for all values of Da (=10−2, 10−3, 10−6).
For example, at Re = 10 the percentage difference of CD at
Da = 10−3 and 10−2 with that of the solid cylinder is 2.57%
and 5.89%, respectively. Whereas, at Re = 40 the difference
reduced to 0.63% and 1.92%, respectively. It is to be noted
that the inclusion of the Forchheimer term does not produce
any significant change in drag coefficient.

Fig. 4 shows the effect of Darcy number on the drag ratio
(CDr ) at Re=1 (dashed line) and Re=10 (solid line). From the
figure it is seen that CDr is close to unity for 10−6 �Da�10−4

and thereafter it approaches zero as the permeability (Da) is
increased. A highly permeable cylinder allows the fluid to flow
through it with the least resistance, hence the drag must ap-
proach zero for the high permeability case. Whereas, a porous
cylinder with very low permeability will allow little or no fluid
to pass through it. For Da > 10−2 the drag ratio at Re = 1 is
greater than the drag ratio at Re = 10. We have compared our
results for the drag ratio with those of Noymer et al. (1998) at
Re = 10 for various Da. Noymer et al. (1998) used the Darcy
model to describe the flow through the porous cylinder. Our
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results are in excellent agreement with them up to a Da=10−4.
Beyond this, a deviation of our results from their result occurs.
This is due to the reason that the value of Da=10−4 represents
the limit where viscous effects are important and this becomes
practically Darcian as Da is further reduced (Jimenez-Islas
et al., 1999).

The angle of flow separation from the cylinder (�s) is pre-
sented in Fig. 5 for different values of Reynolds number and
Da=10−6, 10−3, 10−2. The separation angle is measured from
the front stagnation point. It is evident from the figure that
the separation point shifts towards the rear stagnation point
(�= 180◦) as Da increases. The external flow field will experi-
ence separation only if the inertial forces are of sufficient mag-
nitude. A porous cylinder allows a finite fluid velocity at the
interface, which becomes more important at higher Da. This
velocity has the effect of reducing the relative importance of
the inertial forces in the external field. Hence, separation is de-
layed with respect to Reynolds number compared to the solid
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Fig. 11. Distribution of vorticity for the flow through the porous cylinder
(solid and dashed lines refer to positive and negative values, respectively) at
Da = 10−2 (�= 0.993) (a) Re = 1; (b) Re = 10; (c) Re = 20; (d) Re = 30 and
(e) Re = 40.

cylinder case. The situation is similar to an injection from a
porous cylinder (Mathelin et al., 2002). The separation angle
varies almost linearly with Reynolds number when Re is greater
than 20 for porous as well as solid cylinder case.

The length of the symmetric wake formed behind the porous
cylinder is found to vary with Da. The predicted wake length
(L/a) is plotted as a function of Reynolds number in Fig. 6 for
solid cylinder and porous cylinder at Da=10−6, 10−3 and 10−2

(� = 0.629, 0.977 and 0.993). Our prediction shows that the
wake length increases linearly with an increment in Reynolds
number for both the solid and porous cylinder. We found a
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Fig. 12. Distribution of vorticity for the flow through the porous cylinder
(solid and dashed lines refer to positive and negative values, respectively) at
Da=10−6 (�=0.629) (a) Re=10; (b) Re=20; (c) Re=30 and (d) Re=40.

reduction in wake length as Da as well as porosity is increased.
The shifting of the separation point downstream contributes to
this phenomenon.

In case of a solid cylinder the downstream separation occurs
for Re beyond 7. In contrast to the solid cylinder, the porous
cylinder allows a finite amount of fluid to pass through with a
non-zero velocity at the interface. With increasing Da the ve-
locity of the fluid at the interface increases. This velocity has
the effect of reducing the relative importance of the inertial
forces in the external field. Hence separation must be delayed.
Fig. 8 shows the critical Reynolds number at which flow sep-
aration occurs as a function of Da. Flow separation occurs at
Re = 7 for 10−6 �Da�10−3. For this range of Da the fluid
velocity at the interface is negligible (of the order of 10−6).
At Da = 10−2 flow separation occurs for Re > 10. At a higher
Darcy number of 0.02 separation is considerably delayed up to
Re=17. Hence, a pronounced delay in flow separation will oc-
cur for the case of a porous bluff body subjected to a transverse
flow at higher Da.

The effect of the porous cylinder is to partially divert the
flow. Some streamlines bypass the cylinder entirely, whereas
others pass through a very small part. The streamlines at high
permeability, i.e., large Darcy number is presented in Figs. 9a–e
for Re = 1, 10, 20, 30 and 40. A large porosity corresponds to
more void volume in the cylinder for fluid to flow through.

Fig. 13. Concentration field in and around the porous cylinder for Re = 20
and Da = 10−2 (� = 0.993) at various non-dimensional time: (a) t = 10; (b)
t = 40; (c) t = 60 and (d) t = 80.

The streamlines easily penetrate the porous region when Darcy
number is high. A stream entering the porous cylinder can-
not pass right through it, because of the recirculation set up
by the external field at the rear end. Hence the streamline by-
passes the wake. Both the main and the recirculating streams
leaving the porous cylinder near the separation point have an
effect very similar to injection from a porous surface into the
main field. The streamline patterns at higher Reynolds num-
ber (Re = 20) show that the recirculation bubble forms at the
downstream side of the cylinder. The center of the bubbles is
slightly pushed away from the surface of the porous cylinder
compared to the solid cylinder case.

The streamlines at lower values of Darcy number (Da=10−6)
are presented in Figs. 10a–d for Re=10, 20, 30 and 40. At this
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Fig. 14. Concentration field in and around the porous cylinder for Re = 1
and Da = 10−2 (� = 0.993) at various non-dimensional time (a) t = 10; (b)
t = 20 and (c) t = 50.

value of Darcy number the streamlines bypass the cylinder and
the wake is similar to that of flow past a solid cylinder. The
wake consists of two vortices attached to the downstream sides
of the cylinder. The penetration through the cylinder is very
small. The wake remains symmetric for the range of Reynolds
number considered in this paper (Re�40).

The vorticity contours are presented in Figs. 11a–e for Re =
1, 10, 20, 30 and 40 when Da = 10−2 with dashed lines used
for negative values and solid lines for positive ones. The wake
is symmetric and two equal and opposite vortices are formed
at the downstream side of the cylinder. The strength of the
vortices are reduced in comparison with the solid cylinder case.
For a solid cylinder, the vorticity diffuses from the surface into
the external flow field, whereas, vorticity diffuses into both
the external and internal flow fields when a porous cylinder is
considered. Figs. 12a–d shows the vorticity contour at Da =
10−6 for Re = 10, 20, 30 and 40. At this Darcy number, unlike
Da=10−2 case, the vorticity fails to diffuse through the porous

Fig. 15. Concentration field in and around the porous cylinder for Re = 10
and Da=10−6 (�=0.629) at a non-dimensional time: (a) t =50; (b) t =100
and (c) t = 200.

cylinder and the vorticity diffusion occurs only in the external
flow field resembling that of a solid cylinder.

The temporal evolution of the concentration field around the
porous cylinder for two cases of Darcy number Da = 10−2

(� = 0.993) at Reynolds number Re = 20 and 1 and Da = 10−6

(�=0.629) at Re=10 for a Schmidt number Sc=600 are given in
Figs. 13–15. Figs. 13a–d display the instantaneous distribution
of concentration at Da=10−2 (�=0.993) and Sc=600 at four
different non-dimensional time t = 10, 40, 60 and 80. At time
t = 10 the fluid is strong enough to ooze through the cylinder.
Nearly 40% of the solute present in the porous region is washed
away to the rear side due to strong convection of the fluid to
form two symmetric plume structures in the downstream. The
plumes are almost parallel to each other. The contour maps
of instantaneous concentration field and vorticity have some
similar features as both are being transported by the flow in the
wake. At a non-dimensional time 40, the plumes meander the
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recirculation region at the rear side of the cylinder and is about
to attach together to form a single plume. The dimensionless
concentration, �, now at the cylinder core is reduced to 0.9.
The two symmetric plumes join together to form a single-tail-
like structure at time, t = 60. In the context of marine sinking
aggregates, this trail may be sensed by zooplankton, which
attempt to follow the trail and colonize the particles. It can be
seen that mixing of solute in the ambient fluid is slow in the
recirculation region. The length of the tail is found to be 16
times the radii of the cylinder. At time 80, a long slender plume
is formed at the downstream with decreasing concentration at
the outer edge. The slender plume of high concentration persist
for long duration in the wake of the aggregates. As described
by Kiorboe et al. (2001), this plume have a significant effect on
phytoplankton growth in the euphotic zone. The concentration
is almost reduced to 0.4 at this time and the cylinder has almost
lost all of its initial contents. The tail is found to grow in length
with reduced concentration. The length of the tail now is about
20 times the cylinder radii and it is attached at the rear end.

The concentration field at a low Reynolds number Re = 1 at
Da = 10−2 for Sc = 600 is plotted in Figs. 14a–c. At this low
Re the mass transfer is mostly due to diffusion and a mixture
in the upsteam side of the cylinder is evident from the figure.
The mass transport phenomenon at this Re is entirely different
compared to higher Re case. The rate of mass transfer from the
porous cylinder is rather slow. Unlike the higher Re case, the
plume is thicker in size with a blunt edge.

The instantaneous concentration field for the case of cylin-
der with low Darcy number, Da = 10−6 (i.e., �= 0.629) is pre-
sented in Figs. 15a–c. We present the solution for Re = 10 and
Sc=1000, which produces the Peclet number 10,000 and com-
pared it with the solution provided by Kiorboe et al. (2001) for
the stokes flow past a solid sphere. Similar to the previously
discussed case, i.e., Da = 10−2 two non-parallel, symmetric
plumes having a concentration of about 0.25 are formed at the
downstream side of the cylinder. At time t = 50, the concentra-
tion is found to be maximum inside the porous region up to a
radius of 0.95. At time 100, the symmetric plumes are found to
attach together. A small region with almost zero concentration
is formed near the rear stagnation point of the cylinder. This
region is the flow recirculation region where no mixing of so-
lute has taken place at this instant of time. The tail has a length
of 6.9a. The region of zero concentration at the rear end of the
cylinder cease to exist at t = 200. At this instant the concentra-
tion is still high (�=1.0) up to a radial distance of 0.75 from the
center of the cylinder, and it decreases towards the outer edge.
The tail length is found to be the same as that of the previous
time of t = 100. The mixing and eventually the formation of
the slender plume and the depletion of the concentration in this
case is found to be much slower when compared to higher Da
case. The distribution of concentration at large time (t �100)
is “some what” similar to the stokes model for a solid sphere
provided by Kiorboe et al. (2001). However, the length of tail
of lower concentration in the wake is much smaller compared
to the solution provided by Kiorboe et al. (2001). Our result
shows that the long slender plume in the wake of the sinking
aggregates persist for long duration.

5. Conclusion

A numerical study of the flow and concentration field in and
around a permeable cylinder has been made through a single-
domain approach. We found that the flow field remains steady
for the range of Reynolds number considered (i.e., 1�Re�40).
The non-linear advection terms along with the Forchheimer
term are found to be insignificant inside the porous region in the
range of Reynolds number and Darcy number considered. The
drag experienced by the porous cylinder reduces monotonically
with the increase of Re and decrease of Da. The reduction in
CD due to the increase of permeability is more pronounced in
the lower range of Reynolds number, i.e., Re�5. The angle
of separation and wake length reduces as the Darcy number
increases. The concentration field shows a plume which extends
up to 20 times the radius of the cylinder when Da = 10−2.

Acknowledgment

One of the authors gratefully acknowledges the grant re-
ceived from the Max Planck Institute for Marine Microbiology,
Bremen, Germany.

References

Adler, P.M., 1992. Porous Media: Geometry and Transports. Butterworth-
Heinemann, Stoneham, MA.

Alldredge, A.L., Gotschalk, C., 1988. In situ settling behaviour of marine
snow. Limnology and Oceanography 33, 339–351.

Alldredge, A.L., Gotschalk, C., 1989. Direct observations of the
mass flocculation of diatom blooms: characteristics, settling velocity
and formation of diatom aggregates. Deep Sea Research: Part
A—Oceanographic Research Papers 36 (2), 159–171.

Basu, A.J., Khalili, A., 1999. Computation of flow through a fluid–sediment
interface in a benthic chamber. Physics of Fluids 11 (6), 1395–1405.

Beckermann, C., Viskanta, R., 1988. Double diffusive convection
during dendritic solidification of a binary mixture. Physicochemical
Hydrodynamics 10, 195–213.

Braza, M., Chassaing, P., Minh, H.H., 1986. Numerical study and physical
analysis of the pressure and velocity fields in the near wake of a circular
cylinder. Journal of Fluid Mechanics 165, 79–130.

Dennis, S.C.R., Chang, G.Z., 1970. Numerical solutions for steady flow
past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid
Mechanics 42 (3), 471–489.

Fornberg, B., 1980. A numerical study of steady viscous flow past a circular
cylinder. Journal of Fluid Mechanics 98 (4), 819–855.

Heier, K., Von Wolfersdorf, L., 1990. Numerical evaluation of potential flow
past a circular cylinder with porous surface. Zeitschrift fur Angewandte
Mathematik und Mechanik 70, 65–66.

Jimenez-Islas, H., Lopez Isunza, F., Ochoa Tapia, J.A., 1999. Natural
convection in a cylindrical porous cavity with internal heat source: a
numerical study with Brinkman extended Darcy model. International
Journal of Heat and Mass Transfer 42 (22), 4185–4195.

Kiorboe, T., Thygesen, U.H., 2001. Fluid motion and solute distribution
around sinking aggregates, II: implications for remote detection by
colonizing zooplankters. Marine Ecology Progress Series 211, 15–25.

Kiorboe, T., Ploug, H., Thygesen, U.H., 2001. Fluid motion and
solute distribution around sinking aggregates, I: small-scale fluxes and
heterogeneity of nutrients in the pelagic environment. Marine Ecology
Progress Series 211, 1–13.

Masliyah, J.H., Polikar, M., 1980. Terminal velocity of porous spheres.
Canadian Journal of Chemical Engineering 58, 299–302.



S. Bhattacharyya et al. / Chemical Engineering Science 61 (2006) 4451–4461 4461

Mathelin, L., Bataille, F., Lallemand, A., 2002. The effect of uniform blowing
on the flow past a circular cylinder. Journal of Fluids Engineering 124
(2), 452–464.

Nandakumar, K., Masliyah, J.H., 1982. Laminar flow past a permeable sphere.
Canadian Journal of Chemical Engineering 60, 202–211.

Nield, A.D., Bejan, A., 1998. Convection in Porous Media. Springer, New
York.

Nithiarasu, P., Seetharamu, K.N., Sundararajan, T., 1997. Natural convective
heat transfer in a fluid saturated variable porosity medium. International
Journal of Heat and Mass Transfer 40 (16), 3955–3967.

Noymer, P.D., Glicksman, L.R., Devendran, A., 1998. Drag on a permeable
cylinder in steady flow at moderate Reynolds numbers. Chemical
Engineering Science 53 (16), 2859–2869.

Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere
Publishers, New York.

Somasundaram, P., Mysels, K.J., 1975. Steady-state flow in a porous cylinder
with permeable walls and restricted or unrestricted ends. Journal of Fluids
Engineering 97, 379–380.

Sucker, D., Brauer, H., 1975. Investigation of the flow around transverse
cylinders. Wärme Stofübertragung 8, 149–158.

Vafai, K., Kim, S., 1989. Forced convection in a channel filled with porous
medium: an exact solution. ASME Journal of Heat Transfer 111 (4),
1103–1106.

Vainshtein, P., Shapiro, M., Gutfinger, C., 2002. Creeping flow past and within
a permeable spheroid. International Journal of Multiphase Flow 28 (12),
1945–1963.

Vainshtein, P., Shapiro, M., Gutfinger, C., 2004. Mobility of permeable
aggregates: effects of shape and porosity. Journal of Aerosol Science 35
(3), 383–404.

Vanni, M., 2000. Creeping flow over spherical permeable aggregates. Chemical
Engineering Science 55 (3), 685–698.

Von Wolfersdorf, L., 1988. Potential flow past a circular cylinder with porous
surface. Zeitschrift fur Angewandte Mathematik und Mechanik 68, 11–19.

Von Wolfersdorf, L., Mönch, W., 2000. Potential flow past a porous circular
cylinder. Zeitschrift fur Angewandte Mathematik und Mechanik 80,
457–471.


	Fluid motion around and through a porous cylinder
	Introduction
	Governing equations
	Numerical method
	Results and discussion
	Conclusion
	Acknowledgment
	References


