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The electro-osmotic flow of a viscoelastic fluid between parallel plates is investigated analytically. The
rheology of the fluid is described by the Phan-Thien–Tanner model. This model uses the Gordon–Schow-
alter convected derivative, which leads to a non-zero second normal stress difference in pure shear flow.
A nonlinear Poisson–Boltzmann equation governing the electrical double-layer field and a body force
generated by the applied electrical potential field are included in the analysis. Results are presented
for the velocity and stress component profiles in the microchannel for different parametric values that
characterize this flow. Equations for the critical shear rates and maximum electrical potential that can
be applied to maintain a steady fully developed flow are derived and discussed.
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1. Introduction two-dimensional, time-dependent as well as time-independent
The theoretical analysis of electro-osmotic flows (EOF) of New-
tonian fluids in microchannels has been the subject of several stud-
ies. Burgreen and Nakache [1] studied the effect of the surface
potential on liquid transport through ultrafine capillary slits
assuming the validity of the Debye–Hückel linear approximation
to the electrical potential distribution under an imposed electrical
field. Rice and Whitehead [2] discussed the same problem in a cir-
cular capillary. Dutta and Beskok [3] obtained analytical solutions
for the velocity distribution, mass flow rate, pressure gradient, wall
shear stress, and vorticity in mixed electro-osmotic/pressure dri-
ven flows for a two-dimensional straight channel geometry, for
small, yet finite symmetric electrical double layers (EDL), relevant
for applications where the distance between the two walls of a
microfluidic device is about 1–3 orders of magnitude larger than
the EDL thickness. Arulanandam and Li [4] and Wang et al. [5] pre-
sented a two-dimensional analytical model for the electro-osmotic
flow in a rectangular microchannel. Wang et al. [6] derived a semi-
analytical solution to study the flow behaviour of periodical
electro-osmosis in a rectangular microchannel based on the Pois-
son–Boltzmann and the Navier–Stokes equations. Zade et al. [7]
presented analytical solutions for the heat transfer characteristics
of Newtonian fluids under combined pressure and electro-osmotic
flow forcing in planar microchannels. Analytical solutions for the
ll rights reserved.
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EOF driven by a uniform electric field with non-uniform zeta po-
tential distributions along the walls of a conduit were presented
by Qian and Bau [8]. Several other articles can be found in the lit-
erature on theoretical studies of EOF with Newtonian fluids in
microchannels such as those of Petsev and Lopez [9], Qian and
Bau [10], among others.

Biofluids are often solutions of long chain molecules which im-
part a non-Newtonian rheological behaviour characterized by var-
iable viscosity, memory effects, normal stress effect, yield stress
and hysteresis of fluid properties. These fluids are encountered in
chips used for chemical and biological analysis or in micro-
rheometers.

The theoretical study of electro-osmotic flows of non-Newto-
nian fluids is recent and has been mostly limited to simple inelastic
fluid models, such as the power-law, due to the inherent analytical
difficulties introduced by more complex constitutive equations.
Examples are the recent works of Das and Chakraborty [11] and
Chakraborty [12], who presented explicit relationships for velocity,
temperature and concentration distributions in electro-osmotic
microchannel flows of non-Newtonian bio-fluids described by the
power-law model. Other purely viscous models were analytically
investigated by Olivares et al. [13], who considered the existence
of a small wall layer depleted of additives and behaving as a New-
tonian fluid (the skimming layer), under the combined action of
pressure and electrical fields, thus restricting the non-Newtonian
behaviour to the electrically neutral region outside the electrical
double layer. Very recently these studies were extended to
viscoelastic fluids by Afonso et al. [14], who presented analytical
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Nomenclature

Dej Deborah number, kjush

e elementary charge [1.6022 � 10�19 C]
Ex x-component of imposed electric gradient [V m�1]
f ðskkÞ PTT stress coefficient function
H half-height of the microchannel [m]
kB Boltzmann constant [1.3807 � 10�23 J K�1]
L microchannel length [m]
n0 ionic number concentration [m�3]
t time [s]
T absolute temperature [K]
u x-component of velocity [m s�1]
ush Helmholtz–Smoluchowski velocity [m s�1]
x axial direction [m]
y transverse co-ordinate [m]
W microchannel width [m]
z valence of ions

Tensors and vectors
D rate of deformation tensor [s�1]
E external applied electric field [V m�1]
u velocity vector [m s�1]
s polymeric extra-stress tensor [Pa]

Greek
e Extensibility parameter of PTT model
2 dielectric constant of the fluid [C V�1 m�1]

/ electric potential in the streamwise direction (imposed)
[V]

_c velocity gradient [s�1]
g polymer viscosity coefficient [Pa s]
j2 Debye Hückel parameter [m�2]
k relaxation time [s]
kD Debye layer thickness [m]
l viscometric viscosity [Pa s]
qe electric charge density [C m�3]
sxx; syy normal stresses [Pa]
sxy shear stress [Pa]
skk trace of the extra stress tensor [Pa]
n PTT model parameter that accounts for the slip between

molecular network and the continuum medium
w potential field in the transverse direction (induced) [V]
w0 wall zeta potential [V]

Subscripts
c refers to critical value
j refers to Debye–Hückel parameter
sh refers to Helmholtz–Smoluchowski
s refers to solvent

Superscript
} Gordon–Schowalter convected derivative
- dimensionless quantity
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solutions for channel and pipe flows of viscoelastic fluids under the
mixed influence of electro-kinetic and pressure forces, using two
constitutive models: the Phan-Thien–Tanner model (PTT [15]),
with linear kernel for the stress coefficient function and zero sec-
ond normal stress difference [16], and the kinetic theory based Fi-
nitely Extensible Non-linear Elastic model with a Peterlin closure
for the average dumbbell spring force (cf. [17]) denoted as FENE-
P model. Their analysis [14] was restricted to cases with small elec-
tric double-layers, where the distance between the walls of a
microfluidic device is at least one order of magnitude larger than
the EDL, and the fluid is uniformly distributed across the channel.

Afonso et al. [14] also showed that when the viscoelastic flow is
induced by a combination of both electric and pressure potentials,
in addition to the contributions from these two isolated mecha-
nisms there is an extra term in the velocity profile that simulta-
neously combines both forcings, which is absent for the
Newtonian fluids where the superposition principle applies. This
extra term can contribute significantly to the total flow rate, and
appears only when the rheological constitutive equation is non-lin-
ear. Afonso et al. [18] extended their earlier study [14] to the flow
of viscoelastic fluids under asymmetric zeta potential forcing,
whereas Sousa et al. [19] considered the effect of a Newtonian
skimming layer for the PTT fluid.

Flow instabilities can occur for a variety of reasons. For instance,
they are associated with perturbations to non-linear terms of the
governing equations which grow without control. Generally speak-
ing, in electro-osmotic flows in microchannels, flow instabilities
can be promoted by oscillating electric fields, as was justified by
Boy and Storey [20] among others. They can also be promoted by
gradients of conductivity as shown in the experimental study of
Lin et al. [21] who also analyzed the problem theoretically and
numerically.

In addition to inertial non-linearities, which require high Rey-
nolds number flows, non-Newtonian fluids are also prone to flow
instabilities due to non-linearities in their rheological behaviour.
For instance, for viscoelastic fluids constitutive instabilities in
Poiseuille and Couette flows were observed when the constitu-
tive equation exhibits a non-monotonic behaviour for the shear
stress, as reported by Alves et al. [22] for the full PTT model,
and by Español et al. [23] and Georgiou and Vlassopoulos [24]
for the Johnson–Segalman (JS) constitutive equation [25]. To
the best knowledge of the authors this constitutive instability
in microchannels under EOF has not yet been studied. There
are other viscoelastic flow instabilities not associated with
non-monotonic fluid properties, but these are not considered
here.

In this study, we extend the work of Afonso et al. [14] consider-
ing the full Gordon–Schowalter convective derivative in the PTT
model to analyze the steady fully developed flow in the microchan-
nel. We derive expressions for the critical shear rates and Deborah
number beyond which constitutive flow instability occurs. The rest
of the paper is organised as follows. The physical description of the
problem is given in Section 2 while the equations governing the
flow are presented in Section 3. The analytical solutions are derived
in Section 4. Section 5 discusses the results of the study and the
conclusions are presented in Section 6.
2. Physical description of the problem

The geometry under consideration is shown schematically in
Fig. 1, where a microchannel is formed between two parallel plates
separated by a distance (height) 2H. The length of the channel is L
and the width is W, both assumed to be much larger than the
height, i.e., L;W � 2H. The bottom plate is located at y ¼ �H while
the top plate is located at y ¼ H. A potential is applied along the
axis of the channel which provides the necessary driving force
for the flow through electro-osmosis. Due to symmetry of the
geometry and flow conditions with respect to the channel mid-
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Fig. 1. (a) Diagram of the microchannel geometry considered in the study; (b) 2D representation of electro-osmotic flow of viscoelastic fluids in the microchannel for a
negatively charged wall.
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plane ðy ¼ 0Þ, only the upper half of the channel ð0 6 y 6 HÞ is con-
sidered in this analysis.

3. Governing equations

The equations governing the flow of an incompressible fluid be-
tween the parallel walls of the microchannel are the continuity and
the modified Cauchy equation,

r � u ¼ 0 ð1Þ

q
Du
Dt
¼ �rpþr � sþ gsr2uþ F ð2Þ

where u is the velocity vector, t the time, q the fluid density, gs is
the Newtonian solvent viscosity and s the polymeric contribution
to the extra-stress tensor. Here, we consider that the solvent viscos-
ity is negligible in comparison with the polymeric contribution, i.e.,
gs ¼ 0. The term F in the modified momentum Eq. (2) represents a
body force per unit volume, given by

F ¼ qeE ð3Þ

where E ¼ �r/ is the applied external electric field and qe is the
net electric charge density. The potential has two contributions:
(a) an applied external field, E and (b) a spontaneously induced po-
tential that appears near the wall, w. The formation of the EDL in a
fluid containing charged species occurs spontaneously when the
fluid is brought in contact with the microchannel walls, causing a
preferential redistribution of the charged species in the fluid and
wall [26,27]. In order to obtain the induced potential field, the net
charge density distribution ðqeÞ has to be solved as discussed in
Section 3.2.
3.1. Constitutive equation

The model adopted here to describe the viscoelastic behaviour
of the fluid is the PTT model [15], which can be expressed as

f ðskkÞsþ k s
} ¼ 2gD ð4Þ

where D ¼ ðruT þruÞ=2 is the rate of deformation tensor, k is the
relaxation time, g is the polymer viscosity coefficient and s

}
repre-

sents the Gordon–Schowalter convected derivative of the stress-
tensor, defined as

s
} ¼ Ds

Dt
�ruT � s� s � ruþ nðs � Dþ D � sÞ ð5Þ

where e is the extensibility parameter and parameter n accounts for
the slip between the molecular network and the continuum med-
ium [15]. A simplified version of the above model is the so-called
simplified Phan-Thien–Tanner (sPTT) equation, where n ¼ 0. The
stress coefficient function, f ðskkÞ is given by the linear form,

f ðskkÞ ¼ 1þ ek
g

skk ð6Þ

where skk ¼ sxx þ syy þ szz represents the trace of the extra-stress
tensor. As the flow is two dimensional, we have szz ¼ 0. When
f ðskkÞ ¼ 1 (i.e., when e ¼ 0, but n – 0), the Johnson–Segalman con-
stitutive equation, used for dilute polymeric solutions, is recovered.

3.2. Potential field within the electric double layer

The flow investigated is steady and fully developed and in addi-
tion the electric double layers (EDLs) are thin so that there is no
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interference from one wall into the other. These conditions sim-
plify the Nernst–Planck equations governing the ionic and electric
potential field ðwÞ distributions. Consequently, the potential field
within the electric double layer can be given by the well known
Poisson equation:

r2w ¼ �qe

2 ð7Þ

where 2 is the dielectric constant of the solution. We are here con-
sidering standard kinetic theory conditions, where the applied con-
stant potential streamwise gradient (D/=L, where L is the channel
length) is much weaker than the induced transverse ion potential
ðwo=kDÞ so mutual interference is negligible. The distribution of
the net electric charge density, qe, in equilibrium near a charged
surface, as in a fully developed flow, is described as [26]

qe ¼ �2noez sinh
ez

kBT
w

� �
ð8Þ

For small values of w, the Debye–Hückel linearization principle
ðsinh x � xÞ can be used, which means physically that the electrical
potential is small compared with the thermal energy of the charged
species. Invoking this principle, the Poisson–Boltzmann equation
resulting from substitution of Eq. (8) into Eq. (7) takes the following
simpler linear form

d2w

dy2 ¼ j2w ð9Þ

where j2 ¼ 2noe2z2=ð2 kBTÞ is the Debye–Hückel parameter, related
with the thickness of the Debye layer, kD ¼ 1=j (normally referred
as the EDL thickness). This approximation is valid when the Debye
thickness is small but finite, i.e., for 10 6 H=kD 6 103. As a conse-
quence the induced potential is limited so that its energy does
not exceed the thermal energy.

Eq. (9) can be solved subjected to the following boundary con-
ditions: zeta potential at the wall, wky¼H ¼ w0 and symmetry in the
centerline, ðdw=dyÞky¼0 ¼ 0, and can be written in dimensionless
form as

�w ¼ coshð�j�yÞ
coshð�jÞ ð10Þ

where the following non-dimensional quantities are defined:
�w ¼ w=w0; �j ¼ jH and �y ¼ y=H. Finally, the net charge density distri-
bution Eq. (8) in conjunction with Eq. (10) reduces to

qe ¼ � 2 w0j2 coshð�j�yÞ
coshð�jÞ ð11Þ
4. Analytical solution

4.1. PTT constitutive equation

The predictions of the PTT model in this flow, for which
u ¼ fuðyÞ;0; 0g, can be obtained from Eqs. (4)–(6), and leads to

f ðskkÞsxx ¼ kð2� nÞ _csxy ð12Þ
f ðskkÞsyy ¼ �kn _csxy ð13Þ

f ðskkÞsxy ¼ g _cþ k 1� n
2

� �
_csyy �

kn
2

_csxx ð14Þ

where skk ¼ sxx þ syy is the trace of the extra-stress tensor and _c is
the velocity gradient ð _c ¼ du=dyÞ. Upon division of Eq. (12) by Eq.
(13) the specific function f ðskkÞ; _c and sxy cancel out, and a relation
between the two normal stresses is obtained,

syy ¼ �
n

2� n
sxx ð15Þ
leading to the following form of the stress coefficient function:

f ðskkÞ ¼ 1þ 2ekð1� nÞ
gð2� nÞ sxx ð16Þ

Division of Eq. (14) by Eq. (12) results in a second order algebraic
equation for the streamwise normal stress,

kns2
xx � gsxx þ kð2� nÞs2

xy ¼ 0 ð17Þ

which leads to the following physical solution for sxx (note that at
the centerline, sxx and sxy should be zero)

sxx ¼
g

2kn
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2nð2� nÞ

g2 s2
xy

s2
4

3
5 ð18Þ
4.2. Analytical flow solution for the PTT model

From the invoked assumptions and for a zero pressure gradient,
the momentum Eq. (2) reduces to

dsxy

dy
¼ �qeEx ð19Þ

where Ex ¼ �d/=dx is the streamwise gradient of the applied exter-
nal electric potential ð/Þ. Using Eq. (11) and noting that sxyky¼0 ¼ 0,
Eq. (19) can be integrated to yield

sxy ¼2 w0Exj
sinhðjyÞ
coshðjHÞ ð20Þ

Using the relation between the normal and shear stresses – equa-
tion (18), an explicit expression for the normal stress component
is obtained,

sxx ¼
g

2kn
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� akjush

sinhðjyÞ
coshðjHÞ

� �2
s2

4
3
5 ð21Þ

with a defined as a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2� nÞ

p
, for compactness and

ush ¼ � 2 woEx=g is the Helmholtz–Smoluchowski velocity based
on the zero-shear rate viscosity. After combining Eqs. (14)–(16),
(20) and (21) we obtain an expression for the velocity gradient:

_c ¼ du
dy
¼ �

1þ 1
v 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� akjush

sinhðjyÞ
coshðjHÞ

� �2
r( )" #

jush
sinhðjyÞ
coshðjHÞ

1� 1
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� akjush

sinhðjyÞ
coshðjHÞ

� �2
r" #

ð22Þ

with v defined as v ¼ nð2� nÞ
eð1� nÞ, in order to improve the readability.

Integrating Eq. (22) and applying the no-slip boundary condition
at the wall (i.e., u ¼ 0, at y ¼ H ) the following velocity profile is
obtained:

u ¼ 2 coshðjHÞ
a2k2j2ush

2þ v
v

� �
1
2

ln
ð1þ AðHÞÞð1� AðyÞÞ
ð1� AðHÞÞð1þ AðyÞÞ

� �	

� ln
tanh jy

2


 �
tanh jH

2


 �
( )

� 1
ð2þ vÞ

a2k2j2u2
sh

coshðjHÞ 1� coshðjyÞ
coshðjHÞ

� �

� akjush

coshðjHÞ ðarcsinfB coshðjyÞg � arcsinfB coshðjHÞgÞ
�
ð23Þ

where,

AðyÞ ¼ coshðjyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� akjush

sinhðjyÞ
coshðjHÞ

h i2
r ; B ¼

akjush
coshðjHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ akjush
coshðjHÞ

h i2
r

Eq. (23) can be written in dimensionless form as
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Fig. 2. Dimensionless velocity profiles for �j ¼ 10;20 and 100 for pure electro-
osmotic flow of a Newtonian fluid. Symbols represent the data from Burgreen and
Nakache [1].
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u=ush ¼
2

G aDej

2þ v
v

� �
1
2

ln
ð1þ Að1ÞÞð1� Að�yÞÞ
ð1� Að1ÞÞð1þ Að�yÞÞ

( )"

� ln
tanh �j�y

2


 �
tanh �j

2


 �
( )

� 1
ð2þ vÞG aDej 1� coshð�j�yÞ

coshð�jÞ

� �

�G ðarcsinfB coshð�j�yÞg � arcsinfB coshð�jÞgÞ
#

ð24Þ

with the dimensionless forms of A and B,

Að�yÞ ¼ coshð�j�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G2sinh2ð�j�yÞ

q ; B ¼ Gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G2

p and G ¼ aDej

coshð�jÞ

where Dej ¼ kjush is a Deborah number.

4.2.1. Critical shear rate
A physical solution for the transverse profile of velocity, in Eq.

(23), only occurs when

akjush
sinhðjyÞ
coshðjHÞ

	 �2

6 1

Thus, at critical conditions (that occurs at the wall):

sinhðjHÞ ¼ coshðjHÞ
akjjushj

ð25Þ

Substituting Eq. (25) in Eq. (22), we conclude that the critical shear
rate j _ccj is

kj _ccj ¼
eð1� nÞ þ nð2� nÞ
½nð2� nÞ�3=2 ð26Þ

This is the same constitutive instability obtained by Alves et al. [22]
for pressure-driven channel flows, and is related with the existence
of a local maximum of the shear stress as a function of the shear
rate for the PTT model without a solvent viscosity, and occurs for
the condition indicated in Eq. (26), independent of the mechanism
used to drive the flow [22]. This critical shear rate depends on both
e and n, i.e., it is a characteristic of the PTT model and independent
of the type of forcing. Above the maximum shear rate given in Eq.
(26), the governing equations for the flow between the walls of
the microchannel do not have a real solution, and the fully-devel-
oped steady solution no longer exists.

4.2.2. Expression for critical Deborah number
Under critical conditions at the wall, multiplying Eq. (22) by k

results in the expression

k _cc ¼ �2 1þ 1
v

	 �
Dej tanhðjHÞ

For jH > 10; tanhðjHÞ ! 1 and the previous equation takes the
form

k _cc ¼ �2 1þ 1
v

	 �
Dej ð27Þ

Equating Eq. (26) and (27) we get a relation for the critical Deborah
number as

jDej;cj ¼
1
a

ð28Þ

Beyond this critical value of Dej;c the flow cannot be steady and
fully developed, as the shear rate near the wall exceeds the critical
value. An expression for the corresponding critical electric potential,
that can be applied, Ex;c , can be obtained from Eq. (28) and is given
by
jEx;cj ¼
g

akj 2 jwoj
ð29Þ

This expression is useful in setting the electric field along the chan-
nel so as to have a stable flow. If a strong forcing is imposed, the
flow must naturally evolve to a different condition, presumably
an unsteady flow. Note that an asymmetric steady flow would lead
to a shear rate beyond the critical value of Eq. (26) at one of the
walls, thus reinforcing the idea that only an unsteady flow is possi-
ble. However, the investigation of the flow characteristics above
this critical condition and of the transition process requires the
use of various different specific tools.
5. Results and discussion

The general equations for the flow of viscoelastic fluids in
microchannels under the influence of electro-osmosis were de-
rived in Section 4. The influence of electro-kinetic forcing and fluid
rheology on the velocity profile has been identified in Eq. (23).
Important limiting cases contained in the general solutions are:
(a) Newtonian flow under the sole influence of electrokinetic forces
and (b) viscoelastic fluid with zero second normal stress difference,
i.e., the simplified Phan-Thien–Tanner (sPTT) equation with n ¼ 0.

For a Newtonian fluid the relaxation time is zero and the Debo-
rah number vanishes (Dej ¼ kjush ¼ 0, although also true, it suf-
fices to impose k ¼ 0), so the velocity profile is only a function of
the wall distance and the relative microchannel ratio, �j, as shown
earlier by Burgreen and Nakache [1]. Fig. 2 shows the effect of the
relative microchannel ratio, �j (or H=kD, where kD is the Debye layer
thickness) on the dimensionless velocity profiles ðu=ushÞ for pure
electro-osmotic flow. As �j! 1 the double layer thickness becomes
of the same order of magnitude as the channel half-height and the
region of excess charge is distributed over the entire channel. This
situation is not fully compatible with this solution for which the
Debye–Hückel approximation was invoked, which requires
�j P 10. As �j increases, the width of the Debye layer decreases,
and the profile becomes sharper near the wall, as illustrated in
Fig. 2.

The effect of Dej on the dimensionless velocity profiles is shown
in Fig. 3 at different Deborah numbers and fixed e and n while
�j ¼ 20. At large Deborah numbers, the ratio u=ush is significantly
greater than unity near the centerline due to shear-thinning of
the viscosity of the PTT fluid and the consequent lower viscosities
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at the wall region. With a decrease in Dej, shear thinning effects
become less important, and below Dej ¼ 0:1 the dimensionless
velocity profile remains unaltered, and equal to the profile for a
Newtonian fluid.

The flow between the parallel walls of the microchannel de-
pends on rheological and electro-osmotic parameters. The influ-
ence of e and n on the dimensionless transverse velocity profiles
are plotted in Fig. 4a and b, respectively, for �j ¼ 20 at Dej ¼ 3:0.
Upon fixing Dej and n and decreasing e from 0.2 to 0.001, we find
that the dimensionless velocity profiles approach the solution for
Johnson–Segalman fluid ðe ¼ 0Þ, which in this case is similar to
the Newtonian solution because of the small n used, as seen in
Fig. 4a. The variation of the non-dimensional velocity profiles at
n ¼ 0:001;0:005 and 0.01 is presented in Fig. 4b for Dej ¼ 3 and
e ¼ 0:1. Increasing n from 0.001 to 0.01 increases the velocity pro-
file due to enhanced shear-thinning associated with n.

The critical Deborah number ðjDej;cjÞ, predicted from Eq. (28) is
presented in Fig. 5 as a function of n. In log–log scale Dej;c de-
creases monotonically and linearly as the parameter n increases
(with a slope of �1/2) for small values of n, and in the limiting case
of n ¼ 0 (sPTT model) the flow is constitutively stable for any Dej.
At any non-zero value of n increasing the value of Dej (or the elec-
tric gradient, Ex) beyond a critical value produces a constitutively
unstable flow. From Eq. (28), we find jDej;cj only depends on n,
when �j > 10.

The variation of the dimensionless critical shear rate ðkj _ccjÞwith
e as a function of n is presented in Fig. 6 for n ¼ 0:001;0:01 and 0.1.
The plot of critical shear rate versus e shows a linear relationship
for all n, as anticipated from Eq. (26). The critical shear rate gradu-
ally increases for n ¼ 0:01 and 0.1, whereas, a steep rise with e is
observed as n decreases (cf. Fig. 6 with n ¼ 0:001). In the limit,
for n ¼ 0 the curve is vertical, i.e., kj _cjc tends to infinity meaning
stable flow.

Profiles of normal and shear stresses, drawn based on Eqs. (20)
and (21), are shown in Fig. 7a and b as a function of y=H at �j ¼ 10
and 20 for different values of Dej. The normal stress approaches
zero for y=H < 0:75 and increases rapidly near the wall. At low
Dej the normal stress is almost zero near the wall for both
�j ¼ 10 and 20. With increase in Dej the normal stress increases
gradually. The increase in normal stress is gradual for �j ¼ 10 com-
pared to �j ¼ 20 where the rise is sudden in agreement with the
corresponding variations of the velocity profile. A similar trend is
observed for the shear stress profiles as seen in Fig. 7.
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For the channel flow of viscoelastic fluids with electrokinetic
forces, in the absence of Gordon–Schowalter derivative, Afonso
et al. [14,18] observed that the influences of e and Dej can be com-
bined as a single dimensionless quantity, eDe2

j. In order to verify
whether this also occurs here, we considered two sets of � and
Dej so that eDe2

j are equal to 0.1 and 0.4, keeping n constant and
equal to 0.01. Results for the dimensionless transverse velocity
profiles in the channel (not shown here) revealed that no such
eDe2

j scaling apply here compared to the sPTT model.
6. Conclusions

Analytical solutions in microchannels for the electro-osmotic
flow of viscoelastic fluids obeying the full PTT model have been de-
rived. The Gordon–Schowalter convected derivative has been used
in this model which leads to non-zero second normal stress differ-
ence. Symmetric boundary conditions with equal zeta potentials at
the walls were assumed. A nonlinear Poisson–Boltzmann equation
governing the electrical double-layer field and a body force gener-
ated by the applied electrical potential field were included in the
Navier–Stokes equations. Some of the important results can be
summarised as follows:

� Comparison of the present result with the analytical solution, for
the flow of Newtonian fluids, available in the literature is found
to be consistent.

� Profiles of dimensionless velocities in the channel are invariant
with Dej below Dej ¼ 0:1.

� When the shear rate and Deborah number exceed a critical value
a constitutive flow instability occurs for n – 0. Expressions for
these critical values of shear rate and Deborah number are
reported. The critical shear rate is found to be dependent of e
and n, whereas the critical Deborah number is only dependent
on n for large �j. The critical Deborah number increases with
decrease in n tending to infinity as n tends to zero.

� Dimensionless normal and shear stresses are approximately
zero near the centerline and rise rapidly near the channel walls.
At low Deborah numbers both these quantities are almost neg-
ligible. At higher Dej the values of these quantities rise rapidly
with increasing microchannel height ratio.
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