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a b s t r a c t

Numerical simulations are performed for the flow and heat transfer from a stationary 2D square cylinder
placed near a moving wall at Reynolds number 100 and cylinder-to-wall gap ratios in the range 0.1 6
G/D 6 4. The governing equations are solved using a finite volume method. Flow and thermal field resem-
ble that of isolated case when the cylinder is far away from the moving wall. When G/D < 1, the twin
vortex shedding pattern is transformed into single row of negative vortices and eventually the flow
becomes steady when G/D < 0.3. Lift ðCLÞ and drag coefficient ðCDÞ of the cylinder are higher compared
to that of an isolated cylinder. Strouhal number (St) of the cylinder increases with decrease in gap ratio
from 4 to 1. With a further decrease in gap ratio, St reduces drastically before vanishing at G/D = 0.3 as a
consequence of vortex shedding suppression. In general, the heat transfer rates are higher than the case
of an isolated cylinder. The mean Nusselt number (NuM) increases with decrement in gap ratio. However,
the trend is not the same. NuM increases gradually when G/D is varied from 4 to 0.5, while it suddenly
decreases with decrement in G/D from 0.5 to 0.3 and again rises sharply for G/D 6 0.2. Results indicate
that an enhancement of 27.45% in mean Nusselt number can be achieved, compared to the isolated case,
by placing the cylinder at G/D = 0.1.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

When a uniform fluid stream flows past a stationary square cyl-
inder the flow remains attached for Re 6 2. When Re > 2, two sym-
metric recirculating eddies are formed behind the cylinder. These
eddies remain symmetric and keep increasing in size up to
Re = 40. For Re > 40, flow becomes unsteady and the negative and
positive shear layers formed on the top and bottom surface of
the cylinder, respectively, roll-up giving rise to two rows of alter-
nate shedding of vortices called the Von Karman vortex street. If
the cylinder is maintained at a temperature higher than the ambi-
ent, the shed vortices from the cylinder tends to enhance heat
transfer rates by carrying the heat along with them. The amount
of heat transported from the cylinder to the ambient fluid stream
depends mainly on the Reynolds number of the flow. With an in-
crease in Re the heat transfer rates from the cylinder increases. This
phenomenon plays an essential role in the design of heat exchang-
ers, vortex shedding flow meters, magnetic disc-storage devices,
power cables and in cooling of electronic components [1]. Due to
this reason unsteady flow and heat transfer from isolated square
cylinders have been the subject of numerous scientific investiga-
tions in the past [2,3].
ll rights reserved.
However, based on early experimental and numerical studies, it
has been established that the flow pattern behind the square/
circular cylinder is greatly altered when a plane wall, either sta-
tionary or in motion, is brought in proximity. The modification in
flow pattern depends on how close the moving or stationary plane
wall is brought near the cylinder and the flow Reynolds number.
Since the flow pattern changes with the introduction of a wall, heat
transport, too, varies that depends on two parameters: Reynolds
number and gap ratio. When a cylinder is brought near a stationary
or moving wall, for the conditions of unsteady flow, vortex shed-
ding is suppressed below a certain gap ratio called the critical
gap ratio. The gap ratio is a non-dimensional parameter which is
the ratio of gap distance between the cylinders’ bottom surface
and plane wall, G, and the cylinder diameter, D and is denoted by
G/D.

As stated earlier, the flow pattern behind a bluff body is greatly
altered in the presence of a stationary wall compared to the iso-
lated case. In an early experimental study on vortex shedding from
a circular cylinder in a towing water tank, Taneda [4], observed a
single row of vortices, rather than two-rows of alternately shed
vortices, when the cylinder was towed very close to the wall. For
the case of a circular cylinder, Bearman and Zdravkovich [5] estab-
lished that a gap ratio of 0.3 is enough to suppress the vortex shed-
ding phenomenon. In a flow visualization study, Price et al. [6]
showed that vortex shedding is suppressed for G/D 6 0.125. Bailey
et al. [7] measured the pressure and velocity field near a square
cylinder in proximity to a solid wall at Re = 19,000. Their study
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Nomenclature

AB front face of the cylinder
BC bottom face of the cylinder
CD rear face of the cylinder
DA top face of the cylinder
D height of the square cylinder
CL lift coefficient, FL

1
2qU2

1D

CLP, CLV lift coefficient due to pressure and viscous forces
CD drag coefficient, FD

1
2qU2

1D

CDP, CDV drag coefficient due to pressure and viscous forces
Cp specific heat capacity
CP pressure coefficient, p�p1

1
2qU12

f frequency of vortex shedding, 1
T

G dimensional distance between the bottom surface of
cylinder and the plane wall

G/D gap ratio or Non-dimensional distance between the bot-
tom surface of cylinder and the plane wall

k thermal conductivity
Lus length of upstream boundary from the front face of the

cylinder
Lds length of downstream boundary from the rear face of

the cylinder
Lh length of top boundary from the top face of the cylinder
Nu local Nusselt number on a face of the cylinder,

� @H
@y

� �
surface

Nu average Nusselt number on any face of the cylinder,R 1
0 � @H

@n

� �
dl

NuM mean Nusselt number of the cylinder, 1
4

P
ABNuf ;r;t;b

p non-dimensional pressure, p
qU2
1P dimensional pressure

Pr Prandtl number, m
a

Re Reynolds number, UD
m

St Strouhal number, fD
U1

t dimensional time
T period of vortex shedding
Uc convective velocity
u, U dimensional and non-dimensional x-component of

velocity, respectively
v, V dimensional and non-dimensional y-component of

velocity, respectively
x, y horizontal and vertical coordinate

Greek
/ dependent variable, U, V or H
l viscosity of the fluid
s non-dimensional time
q fluid density
h dimensional temperature
H dimensionless temperature, h�h1ð Þ

hH�h1ð Þ

Subscript
1 far field value
H high value
f front face
r rear face
t top face
b bottom face
M mean value
us upstream
ds downstream
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showed that vortex shedding is suppressed for G/D < 0.4. While
studying the shear flow past a square body near a stationary plane
wall, Bhattacharyya and Maiti [8] found that vortex shedding is
suppressed even at Re = 100 for G/D = 0.5. More recently, Mahir
[9] made a 3D study of the flow past a square cylinder placed near
a moving wall for gap ratios in the range 0.2 to 4 and for Reynolds
numbers 175, 185 and 250. These studies clearly shows that a sta-
tionary plane wall modifies the flow pattern when a bluff body is
placed in proximity and the unsteady flow turns steady below a
critical gap ratio with an alteration in flow parameters such as drag
and lift coefficients, Strouhal number (St), pressure distribution etc.

When a hot bluff body is brought in proximity to a plane sta-
tionary wall, the amount of heat transfered from the body depends
on various factors such as the Reynolds number, gap ratio, heating
conditions (constant temperature or constant heat flux) and the
type of heat transfer (forced, mixed or natural convection). Yang
et al. [10] analyzed the heat transfer from a circular cylinder under
the effect of a plane solid wall for forced and mixed convection
regime. They found an accelerating effect with increase in
Richardson number while the presence of plane wall showed an
decelerating effect on the flow around the cylinder. The heat trans-
fer rate and drag force increased with increasing G/D and Grashoff
number. Shuja et al. [11] investigated the heat transfer character-
istics of rectangular cylinder with ground effect for gap ratios in
the range 1.3 6 G/D 6 8. They examined the influence of St on
the variation of Stanton number of the cylinder. The shedding fre-
quency increased as gap height reduced and with further reduction
in gap height resulted in diminishing of vortex shedding.
Bhattacharyya et al. [12] studied the mixed convection heat trans-
fer from a square cylinder, in shear flow, at a gap ratio of 0.5 near a
stationary plane wall. Their results indicated that vortex shedding
is delayed when the heat input to the cylinder is increased or in
other words when the Richardson number, Ri, is increased. Heat
transfer rates increased with increasing values of Ri at Re = 125.
Whereas, at higher Re, the heat transfer rates showed a minimal
change with increase in Ri. Chakraborthy and Brahma [13] made
an experimental investigation on heat transfer due the effect of
placing a square prism from a plane wall at various gap ratios
and angle of attack. The mean Nusselt number of the prism re-
duced with decrease in gap ratio. Heat transfer from a circular cyl-
inder placed near a plane stationary wall at 20 6 Re 6 200 for
0.1 6 G/D 6 2 was made by Singha et al. [14]. Vortex shedding
was observed from one side of the cylinder and at the other side
a strong jet action of the fluid through the gap between the cylin-
der and the wall was observed. The mean Nusselt number in-
creased with increase in gap ratio from 0.1 up to a critical gap
ratio that was dependent on the flow Reynolds number. Below a
critical gap ratio, the Nusselt number decreased with an increase
in gap-ratio before asymptotically reaching the Nusselt number
of the isolated case. However, these studies concentrated on flow
and heat transfer from square/cylindrical bluff bodies near a sta-
tionary plane wall.

Looking into these studies, it is quite clear that a bluff body
brought in proximity of a plane stationary wall brings about a
change in flow pattern and thus the heat transfer. Analysis of flow
and heat transfer from bluff bodies near a moving wall is important
since the flow pattern gets altered resulting in a change in thermal
pattern and thus the heat transfer which is much different from the
stationary wall case. Flow past moving vehicles near a plane road,
ships and submarines near a plane wall are all akin to flow past a
square cylinder near a plane-moving wall. In contrast to a cylinder
in proximity of a stationary wall, where a boundary layer is
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formed, the case of a cylinder near a moving wall is entirely differ-
ent as no such boundary layer develops on the wall. Besides, this is
also of academic interest similar to the case of flow and heat trans-
fer from bluff bodies near a stationary wall. Moreover, the critical
gap ratio at which vortex shedding ceases may also differ from
the stationary wall case.

1.1. Previous works

Though several articles are available in the literature concerning
the flow past a square/circular bluff body near a stationary plane
wall, works on the same case but near moving wall is scant in the
literature. In this context, Arnal et al. [15] studied the flow around
a square bluff body in direct contact with a sliding wall. The flow
around a half-cylinder in proximity to a plane moving wall has been
analyzed by Kumaraswamy and Barlow [16]. They did RANS simu-
lations at Re = 4.68 � 105 for1 (isolated) 6G/D 6 0.167 to predict
the flow features, lift and drag coefficient and St. Their finding indi-
cated an increase in lift coefficient with decrease in gap ratio. The St
of the cylinder near the moving wall did not show any significant
variation with gap ratio. Bhattacharyya and Maiti [17] numerically
investigated the flow past a square cylinder near a moving wall
for gap ratios 0.5, 0.25 and 0.1 and for 200 6 Re 6 1000. In their
study, vortex shedding was observed even at G/D = 0.1 at higher
Reynolds numbers. The vortex shedding frequency reduced with
reduction in G/D. The variation in drag coefficient with decrease in
gap ratios, from 0.5 to 0.1, was small for those Reynolds numbers.
The cylinder experienced a negative lift for Re > 400 at G/D = 0.5
and 0.25. Huang and Sung [18] studied the unsteady flow past a
circular cylinder near a moving plane wall for Reynolds numbers
in the range 200 6 Re 6 600 and gap ratios (G/D) from 0.6 to 0.1.
The mean drag coefficient increased when the gap ratio is decreased
up to a critical value. Below the critical value, it started to decrease
with a further decrease in gap ratio. But the lift coefficient increased
with a decrease in gap ratio. When the gap ratio is reduced from
G/D =1 to 0.6, St was found to increase. When G/D was varied from
0.6 up to the critical gap ratio, St started to decrease rapidly. With a
further decrease in gap ratio up to 0.1, the decrease in St was
gradual. Air flow in the gap between a car underbody and a moving
ground was studied by Jones and Smith [19] for 1 6 Re 6 106 for
different underbody shapes. These studies were concerned with
the ’fluid flow’ aspects past a bluff body near a moving wall.

Concerning heat transfer from a bluff body near a moving wall,
the works of Yoon et al. [20,21] are the only investigations avail-
able in the open literature. However, their investigation was fo-
cussed on a circular cylinder rather than a square cylinder. Yoon
et al. [20] presented the flow and thermal field in forced convection
around a circular cylinder near a plane moving wall at Re = 100,
140 and 180. The flow field showed two rows of vortices being
shed from the cylinder at G/D = 4. With decreasing the gap ratio,
at Re = 100, the two-row vortex structure was transformed into
single-row vortex structure at G/D = 0.5 and the flow attained stea-
dy state at G/D 6 0.2. For Re > 100 the single-row vortex structure
appeared even at G/D = 0.2 and 0.1. St of the cylinder increased
with decreasing gap ratio up to 0.5, and decreased for G/D < 0.5.
The lift coefficient increased with increase in G/D. Yoon et al.
[21] extended the earlier work of Yoon et al. [20] for the same
gap ratios but for a wide range of Reynolds numbers i.e.,
60 6 Re 6 200. They demonstrated the dependence of critical gap
ratio on Reynolds number.

1.2. Objective of this study

From the above discussion it is clear that there is no detailed
analysis available, in the open literature, on how the flow pattern
behind an isolated cylinder varies when it is gradually brought in
proximity, from far field, to a plane moving wall. Besides, a study
on the forced convection heat transfer for this configuration is also
not available in the archival literature. Works on the same topic
with a different geometry, i.e., a circular cylinder, do exist [20,21]
in the literature. Therefore, this study aims to fill this gap. A sys-
tematic study has been made to analyze the flow and also the ther-
mal field around a square cylinder in the vicinity of a plane moving
wall for gap ratios in the range 4 6 G/D 6 0.1 and also for the iso-
lated case. The variation of parameters such as lift and drag coeffi-
cients, Strouhal number, pressure distribution and Nusselt number
of the cylinder with gap ratio are presented. The flow and thermal
pattern in the vicinity of the cylinder and the plane moving wall
are presented with the help of contours of vorticity and isotherms.
Only a particular Reynolds number of 100 is chosen for the analy-
sis. At this Re, the flow past an isolated cylinder shows an unsteady
behaviour with periodic vortex shedding. Moreover, at this value of
Re the flow is laminar and two-dimensional.

The remaining of the paper is organized as follows: The mathe-
matical formulation that includes the problem description, govern-
ing equations, boundary conditions and the definition of the
parameters used in this study are presented in Section 2 while Sec-
tion 3 presents the numerical method used, size of computational
domain, grid structure, grid dependence study and the validation
of the code used for the calculations in this study. The results of
the study are discussed in Section 4. Important conclusions from
this study are presented in the last section (Section 5).

2. Mathematical formulation

2.1. Problem description

Consider a 2D square cylinder of height, D, placed at a distance
of ‘G’ above a plane wall as illustrated in Fig. 1(a). The cylinder is
stationary and is maintained a constant temperature, hH, higher
than the ambient whose temperature is h1. The cylinder is
exchanging heat with the surrounding fluid stream which is flow-
ing with a uniform velocity U1. The plane wall is moving from left
to right in the positive x-direction at a uniform velocity U1 (which
is same as the far field velocity). Artificial boundaries are placed at
sufficient distance far away from the cylinder in order to make the
problem computationally feasible.

2.2. Governing equations

The equations governing the 2D, laminar, incompressible flow
and heat transfer from a square cylinder are the continuity,
Navier–Stokes and energy equation in the dimensional form and
is given as:
Continuity equation:

@u
@x
þ @v
@y
¼ 0 ð1Þ

Momentum equations:

q
@u
@t
þ u

@u
@x
þ v @u

@y

� �
¼ � @p

@x
þ l @2u

@x2 þ
@2u
@y2

 !
ð2Þ

q
@v
@t
þ u

@v
@x
þ v @v

@y

� �
¼ � @p

@y
þ l @2v

@x2 þ
@2v
@y2

 !
ð3Þ

Energy equation:

qCp
@h
@t
þ qCp u

@h
@x
þ v @h

@y

� �
¼ k

@2h
@x2 þ

@2h
@y2

 !
ð4Þ

The following characterisitic scales are introduced to non-
dimensionalize the above governing equations:



(a)

(b)

Fig. 1. (a) Sketch of the flow configuration for the uniform flow of air past a heated square cylinder placed near a plane moving wall; (b) mesh distribution in the vicinity of
the plane wall and the cylinder at G/D = 0.5.
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X ¼ x
D
; Y ¼ y

D
; s ¼ tU1

D
; P ¼ p

qU2
1
;

U ¼ u
U1

; V ¼ u
U1

; H ¼ h� h1ð Þ
hH � h1ð Þ :

Assuming negligible viscous dissipation, the dimensionless
form of the governing equations for the incompressible flow of a
constant viscosity fluid past a square cylinder is presented as fol-
lows:
Continuity equation:

@U
@X
þ @V
@Y
¼ 0 ð5Þ

Momentum equations:

@U
@s
þ U

@U
@X
þ V

@U
@Y

� �
¼ � @P

@X
þ 1

Re
@2U

@X2 þ
@2U

@Y2

 !
ð6Þ

@V
@s
þ U

@V
@X
þ V

@V
@Y

� �
¼ � @P

@Y
þ 1

Re
@2V

@X2 þ
@2V

@Y2

 !
ð7Þ

Energy equation:

@H
@s
þ U

@H
@X
þ V

@H
@Y

� �
¼ 1

Re:Pr
@2H

@X2 þ
@2H

@Y2

 !
ð8Þ

The dimensionless variables are defined as:Re = qU1D/l is the
Reynolds number, Pr = lCp/k is the Prandtl number.

2.3. Boundary conditions

Following are the conditions applied at various boundaries in
order to solve the flow problem:

� Inflow boundary (inlet): At the inflow boundary a uniform flow
profile is assumed. i.e.,U = 1, V = 0 and H = 0.
� Top and bottom boundaries: U = 1, V = 0 and @H
@Y ¼ 0.

� Outflow boundary (exit): The convective boundary condition
has been used as it decreases the number of time step, and
allows lower downstream length (Lds) to be used [22], and
is given by
@/
@t
þ Uc

@/
@X
¼ 0 ð9Þ

where Uc is the average non-dimensional streamwise velocity
(equal to unity) and / is the dependent variable U, V or H.
� On the cylinder surface: Non-slip conditions for the velocities

and a constant temperature conditions are applied on the cylin-
der surface. i.e., U = 0, V = 0, H = 1
� On the plane wall: U = 1, V = 0, H = 0

2.4. Definitions of certain parameters

It is now useful to define some of the parameters used in this
study.

2.4.1. Lift (CL) and drag (CD) coefficient
The lift and drag coefficient of the cylinder are calculated as

CL ¼ CLP þ CLV ¼
FL

1
2 qU2

1D
ð10Þ

CD ¼ CDP þ CDV ¼
FD

1
2 qU2

1D
ð11Þ

where, CLP and CLV represent the lift coefficient due to pressure and
viscous force, respectively. Similarly, CDP and CDV represent the drag
coefficient due to pressure and viscous force, respectively. FL and FD

are the lift and drag forces acting on the cylinder. The lift and drag
coefficients due to pressure and viscous forces can be obtained from
the following expression:
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CLP ¼ 2:0
Z 1

0
ðPf � PbÞdY; CLV ¼

2:0
Re

Z 1

0

@U
@Y

� �
f
þ @U

@Y

� �
r

� 	
dx

CDP ¼ 2:0
Z 1

0
ðPf � PrÞdY; CDV ¼

2:0
Re

Z 1

0

@U
@Y

� �
b
þ @U

@Y

� �
t

� 	
dx

with P representing the non-dimensional pressure acting on the
surface of the cylinder. The subscripts f, r, t and b refer to front, rear,
top and bottom surfaces of the cylinder, respectively. The mean val-
ues of the drag and lift coefficients are obtained by taking the aver-
age of their time histories.

2.4.2. Strouhal number
The dimensionless vortex shedding frequency of the cylinder is

given by the Strouhal number (St) defined as

St ¼ fD
U1

ð12Þ

where, f is the frequency of vortex shedding.

2.4.3. Pressure coefficient
The pressure coefficient (CP) is defined by

CP ¼
p� p1
1
2 qU2

1
ð13Þ

where, p and p1 are the dimensional pressure on the cylinder sur-
face and far field, respectively.

2.4.4. Nusselt number
Heat transfer from the cylinder to the flowing fluid is calculated

from the local Nusselt number given by Nu ¼ � @H
@n . Here, n is the

direction normal to a cylinder surface. Average Nusselt number
ðNuÞ at any face of the cylinder is obtained by integrating the local
Nusselt number along that face. The average Nusselt number on
the front (f), rear (r), top (t) and bottom (b) face of the cylinder is
calculated as

Nuf ¼ �
Z B

A
Nu dy; Nut ¼ �

Z A

D
Nu dx;

Nur ¼ �
Z D

C
Nu dy and Nub ¼ �

Z C

B
Nu dx: ð14Þ

The total heat transfer rate from the cylinder is presented in terms
of mean Nusselt number (NuM). NuM is obtained as a mean value of
the average Nusselt number on all the surfaces as shown below

NuM ¼
1
4

X
AB

Nuf ;r;t;b: ð15Þ
3. Numerical details

The governing equations Eqs. (5)–(8) are numerically solved
using the SIMPLE algorithm [23]. These equations are discretized
by integrating over square or rectangular control volumes. A stag-
gered grid system is used in which the velocity components are
stored at the midpoints of the cell while the scalar quantities such
as pressure and temperature are stored at the center of the cell. A
first order implicit scheme has been used to discretize the time
derivatives while a third-order accurate scheme called QUICK
(quadratic upwind interpolation for convective kinematics) of
Leonard [24] has been used for discretizing the convective terms.
The central difference scheme is used for the diffusion terms. The
pressure link between continuity and momentum is achieved by
transforming the continuity equation into a Poisson equation for
pressure. The Poisson equation implements a pressure correction
for a divergent velocity field. The resulting tridiagonal system of
algebraic equations are solved through a block elimination method
at each time step. Iterations are continued until a divergence-free
velocity field is obtained. The solution is assumed to be converged
when the divergence in each cell falls well below 610�8. Using the
updated value of the velocity, Eq. (8) is solved to obtain H at each
cell center.

3.1. Size of computational domain, grid structure, grid dependence
study

The computational domain is rectangular. The inflow boundary
and the top lateral boundary are placed sufficiently far away from
the cylinder such that they do not influence the results. The inflow
boundary lies at a distance Lus = 10D from the front surface while
the top later boundary lies at Lh = 15D from the top surface of the
cylinder. Initially, a downstream boundary length of Lds = 25D is
chosen. The influence of Lds on the mean drag coefficient and mean
Nusselt number of the cylinder are tested for three more values of
Lds, namely Lds = 30D, 35D and 45D. As shown in Table 1, a value of
Lds = 35D has been found to be the optimum value and has been
used for all the cases used in this study.

The computational domain consists of a non-uniform mesh
distribution. The grids are sufficiently fine near the cylinder sur-
face and the moving wall, to capture the fine details of the flow,
and coarse elsewhere. The grids are stretched in geometric pro-
gression. To test and assess the grid independent solutions,
numerical experiments were performed for various grid sizes
for each value of G/D used in this study. For the sake of brevity,
the grid dependence tests made at G/D = 0.5 is only presented
and discussed here.

The following four different size of mesh has been used to check
the dependence of grid on the average drag coefficient ðCDÞ and
mean Nusselt number ðNuMÞ of the cylinder at G/D = 0.5:
275 � 175 (Grid A), 550 � 350 (Grid B), 825 � 525 (Grid C) and
1100 � 700 (Grid D). The minimum distance of the first grid point
from the moving wall and the cylinder surface is d = 0.001. The
dependence of mesh size on CD and NuM is presented in Table 1.
Looking at Table 1, one can find that Mesh C and D produce grid
independent results with the changes in Nu occurring only at the
third decimal place. A similar argument can be made for the down-
stream length at Lds = 35D. The percentage difference in CD and
NuM while using Mesh C and Lds = 35D is less than 1% when com-
pared to Mesh D and Lds = 45D. Hence Mesh C is chosen for further
computation as it presents the best flow field with the least com-
putational time. The grid resolution in the computational domain
as well as near the walls are shown in Fig. 1(b).

3.2. Code validation

In order to validate the code used in the present study, quan-
tities such as average drag coefficient ðCDÞ, Strouhal number (St)
and mean Nusselt number (NuM) for the uniform flow past an iso-
lated square cylinder were computed at 50 6 Re 6 200 as de-
picted in Fig. 2(a)–(c). The numerical results for CD obtained
with the present code for the case of isolated cylinder is shown
by a solid line while the results for the same case available in
the literature are shown by symbols. The results of Sohankar et
al. [22] is the lowest followed by those of Sharma and Eswaran
[25]. Whereas, the corresponding values of Shimizu and Tanida
(experimental data) [26] and Franke et al. [27] are higher than
those of Sohankar et al. [22] and Sharma and Eswaran [25]. The
present results lie well in between those results as seen in
Fig. 2(a). In fact, the present results are in excellent agreement
with those of Shimizu and Tanida [26].

Similarly, the present results for St [cf. Fig. 2(b)] is in good agr-
ement with the results of Franke et al. [27], Sohankar et al. [28],



Table 1
Grid sensitivity and downstream length (Lds) dependence test on average drag coefficient ðCD) and mean Nusselt number (NuM) at gap ratio G/D = 0.5 for the flow past a square
cylinder placed near a moving wall at Re = 100.

Average drag coefficient ðCD) Mean Nusselt Number (NuM)

Grids (m � n) Lds = 25D 30D 35D⁄ 45D Lds = 25D 30D 35D⁄ 45D

275 � 175 (Grid A) 2.952 2.586 2.143 2.139 4.188 4.225 4.425 4.431
550 � 350 (Grid B) 2.658 2.226 2.104 2.099 4.016 4.310 4.358 4.363
825 � 525 (Grid C⁄) 2.251 2.153 2.097 2.095 3.915 4.220 4.233 4.236
1100 � 700 (Grid D) 2.249 2.153 2.096 2.095 3.915 4.219 4.233 4.234

⁄ Mesh and Downstream length (Lds) used in this study.

Fig. 2. Comparison of the computed (a) average drag coefficient ðCDÞ; (b) Strouhal number (St) and (c) mean Nusselt number (NuM) at Reynolds numbers 50 6 Re 6 200 for
the unconfined flow past a square cylinder with those available in the literature.
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Robichaux et al. [29] and Sharma and Eswaran [25]. Finally, the
computed results for the mean Nusselt number of an isolated
cylinder is found to be in excellent agreement with those of
Sharma and Eswaran [25] as seen in Fig. 2(c).
4. Results and Discussion

Forced convection heat transfer of air flow from a square cylin-
der placed near a plane moving wall has been considered in this
study. A square cylinder of height, D, is placed at different heights
(G) from the plane wall and the effect of cylinder-to-wall gap ratio
(G/D) has been investigated numerically. The following are the
parameters that affect the flow and thermal field given by.

� Reynolds number (Re): 100
� Gap ratio (G/D): 0.1–1 in steps of 0.1, 1.5, 2, 4 and 1 (isolated

case)
� Prandtl number (Pr): 0.71 (air)
4.1. Flow characteristics

4.1.1. Time evolution of lift coefficient and drag coefficient
The time evolution of lift coefficient (dashed lines) and drag

coefficient (solid lines), calculated as per Eqs. (10) and (11), are pre-
sented in Fig. 3 at gap ratios, G/D = 4, 2, 1, 0.5, 0.4, 0.3 and 0.2.
Observing this figure, one can find that, in general, CL is oscillatory
and oscillates periodically with time for 0.4 6 G/D 6 4. At G/D = 0.3,
the curve is weakly oscillating and at G/D = 0.2 it attains a steady
state.

When the cylinder is isolated, the alternate shedding of neg-
ative and positive vortices results in a maximum and minimum
value of lift coefficient during a vortex shedding cycle. The lift
coefficient oscillates above and below zero with equal ampli-
tude and thus the average lift coefficient is zero for the isolated
square cylinder. For the case of square cylinder placed in prox-
imity of a moving wall, at G/D = 4, the effect of moving wall is
slightly felt by the cylinder. The lift coefficient profile is slightly
shifted upwards, from the center (which is equal to zero in case



Fig. 3. Time evolution of drag coefficient (CD, solid line) and lift coefficient (CL, dotted line) at various gap ratios, G/D, for the flow past a square cylinder near a plane moving
wall.
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of an isolated square cylinder) resulting in a small positive va-
lue of CL at G/D = 4. When the gap ratio is further decreased
from G/D = 4 to G/D = 1, the lift coefficient starts to shift further
upwards, from the center, and oscillates with more positive val-
ues. At G/D 6 0.5, the lift coefficient completely attains positive
values. At G/D = 0.3, the lift coefficient shows a quasi-steady
profile as the flow attains a quasi-steady state. When G/
D < 0.3, CL is a straight line indicating that the flow has achieved
a steady state and the vortex shedding is suppressed due to the
moving wall.

The time evolution of drag coefficient shows a similar feature
to that of an isolated square cylinder at G/D = 4 with two peaks
during a period (T) of a vortex shedding cycle. At G/D = 2, the sec-
ond peak starts to flatten and vanishes with decreasing G/D. For
0.4 6 G/D 6 1, the CD curve oscillates with the same frequency
as that of the lift coefficient as observed in Fig. 3. While the drag
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coefficient weakly oscillates at G/D = 0.3, it becomes steady at G/
D = 0.2.
4.1.2. Instantaneous vorticity pattern
Contours of instantaneous vorticity that evolve from the

cylinder in the presence of a moving wall are shown in Fig. 4(a)
at G/D = 4, 2, 1, 0.5, 0.3, 0.2 and 1 at Re = 100. At G/D = 4 the flow
is characterized by alternate negative and positive vortices being
shed from the top and bottom surface of the cylinder, respectively.
The two rows of alternately shed vortices almost resemble that of
an isolated square cylinder in uniform flow. For brevity, the vortic-
ity contours for the isolated case are not shown here. Along the
moving plane wall, weak negative and positive vortices appear.
When the cylinder is brought close to the moving wall at G/D = 2,
the flow is again characterized by two-row vortex shedding. On
the moving wall, negative and positive shear layers are formed that
are stronger than the one formed at G/D = 4. When the cylinder is
brought further closer to the moving wall at G/D = 1, the positive
vortices shed from the cylinder starts to interact with the boundary
layer negative vorticity of the moving wall. And now the wake is
dominated mainly by the negative vortices shed from the top sur-
face of the cylinder. The positive vortex that is shed from the bot-
tom surface of the cylinder gets stretched when it interacts with
Fig. 4. Instantaneous contours of (a) vorticity (x) and (b) isotherms at Re = 100 for vario
isotherms are presented at the same instant of time for which the vorticity contours ar
the negative vorticity formed on the moving wall which delays
the roll up process. At G/D = 0.5, the shear layers formed along
the wall coalesce with the positive shear layer formed at the bot-
tom surface of the cylinder and the vortices are stretched, resulting
in a single row of vortices. This effect has also been observed in a
similar study but with a circular cylinder near a plane moving wall
by Huang and Sung [18] and Yoon et al. [20,21]. With further de-
crease in gap ratio, the shedding of single row of vortices cease
and the flow becomes quasi-steady in nature (at G/D = 0.3). Below
the critical gap ratio of G/D = 0.3 the flow attains a steady state
with a steady wake formed behind the cylinder.
4.1.3. Vortex shedding during a cycle at G/D = 4, 1 and 0.4
Fig. 8(b) shows the instantaneous vorticity contours for the flow

past a square cylinder near a moving wall at G/D = 4 at four in-
stants during a vortex shedding cycle. The four instants denoted
by A, B, C and D, in Fig. 8(a), correspond to 0 � T (starting of the cy-
cle), 1

4� T; 1
2� T and 3

4� T , respectively. Where, T is the time period
of the vortex shedding cycle. The negative vorticity that corre-
sponds to clockwise rotation is shown by dashed lines while the
positive vorticity that corresponds to anti-clockwise rotation is
shown by solid lines. The negative and positive vortex grow from
the top and bottom surface of the cylinder, respectively. At the
us gap ratios, G/D, for the flow past a square cylinder near a plane moving wall. The
e drawn.



Fig. 5. Effect of gap ratio (G/D) on (a) Time averaged lift coefficient ðCLÞ, lift
coefficient due to pressure and viscous forces ðCLP ;CLV ) and (b) drag coefficient (CD),
drag coefficient due to pressure and viscous forces (CDP ;CDV ) for the flow past a
square cylinder near a moving wall.

Fig. 6. Distribution of time averaged pressure coefficient ðCPÞ on the surface of the
square cylinder near a plane moving wall as a function of gap ratio, G/D.
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beginning of the cycle, lift is minimum and the drag is maximum
(denoted by A). At this instant, the negative vortex is shed while
the positive vortex grows and is continuously fed by the shear
layer developing at the bottom surface. At instant B, the negative
vorticity on the top surface continues to grow and starts to snap
off the connection between the positive vorticity and the positive
shear layer at the bottom surface of the cylinder. At instant C, the
positive vortex is shed resulting in a maximum lift coefficient.
The positive vortex grows and and starts to snap off the connection
between the negative vorticity and the negative shear layer at the
top surface of the cylinder at instant D and the process continues.

Contours of vorticity are presented at a smaller value of gap ra-
tio i.e., G/D = 1 during a vortex shedding cycle along with the lift
and drag coefficients as illustrated in Fig. 9(a) and (b). The scenario
at this gap ratio is different from the case when G/D = 4. The drag
coefficient has only one peak value during a cycle of vortex shed-
ding and has the same frequency as that of the lift coefficient. At
the beginning of the cycle (instant A), the negative vortex is shed
while the positive vortex grows and is continuously fed by the po-
sitive shear layer developing at the bottom surface. At instant B, the
negative shear layer formed along the wall, just below the bottom
surface of the cylinder, aids in snapping off the supply for the po-
sitive vortex resulting in an early shedding of positive vortex at in-
stant B itself rather than at instant C and the pair of vortices move
downstream together. And thus the drag and lift coefficients have
the same frequency. At instant C, the positive vortex is convected
downstream along the moving wall while the negative vortex con-
tinues to grow.

Fig. 10(b) presents the scenario of vortex shedding at G/D = 0.4
during a cycle of shedding. The form of variation of drag and lift
coefficient with time are similar to the case when G/D = 1 as seen
in Fig. 10(a). At instant A, the negative vortex (top) is shed and
the positive vortex grows (bottom) while it is being fed by the neg-
ative shear layer along the bottom surface of the cylinder. At in-
stant B, the negative vortex from the top surface grows in size
and constricts the positive vortex due to small gap. As a result
the positive vortex is stretched, shed, and is convected along the
wall at this instant. Both the negative and positive vortex move to-
gether downstream. The positive vortex is very weak compared to
the negative vortex that is shed from the top surface. At instant C,
the negative vortex continues to grow. The vortex shed from the
top surface is near circular in shape, while the vortex shed from
the bottom surface is substantially stretched in the flow direction
similar to that observed at a higher Reynolds number of 500 in
the work of Bhattacharyya and Maiti [17].

4.2. Distribution of pressure coefficient on the cylinder surface ðCPÞ

The variation of time averaged pressure coefficient ðCPÞ on the
surface of the square cylinder is shown in Fig. 6 at different G/D.
As seen in the figure, the pressure distribution strongly depends
on the gap between the cylinder and the moving plane wall. The
pressure coefficient shows a significant change along the bottom-
half of the front face (AB) and at the bottom face (BC) of the
cylinder with variation in G/D. Along the bottom face, the pressure
coefficient is negative at G/D = 4 with a peak suction occurring at
the upstream corner of the bottom surface. As the gap ratio is
decreased the pressure coefficient increases enormously to higher
positive values along this face. It should be noted that the differ-
ence between the pressure at the top and bottom surface of the
cylinder results in a net lift force which contributes more to the
total lift coefficient of the cylinder. As a result the average lift
coefficient ðCLÞ of the cylinder shoots up with decreasing G/D as
evidenced from Fig. 5(a). Again, decreasing the gap ratio results
in an increase in pressure coefficient along the bottom-half of the
front face that results in a net increase in average drag coefficient
ðCDÞ with decrease in gap ratio as seen in Fig. 5(b). Along the rear
and top face, CP diminishes when G/D is varied from 4 to 0.5 and
starts to increase for G/D P 0.4.
4.3. Time averaged lift coefficient ðCLÞ

The time averaged lift coefficient of the square cylinder along
with the lift coefficient due to pressure and viscous forces are pre-
sented in Fig. 5(a) as a function of G/D. Looking at the figure, we ob-
serve that CL is positive for all G/D. In general, CL is close to zero
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when G/D = 4 and rises rapidly to higher positive values with
decreasing G/D. When the cylinder is far away from the moving
wall, the lift coefficient oscillates with nearly the same positive
maximum and negative minimum about zero and hence CL is close
to zero when G/D = 4. When the cylinder is brought closer and clo-
ser to the moving wall, the lift coefficient rises rapidly, mainly, due
to changes in pressure distribution on the surface of the cylinder.
Compared to lift coefficient due to viscous forces ðCLV Þ, the lift coef-
ficient due to pressure forces ðCLPÞ is greatly enhanced in the pres-
ence of a moving wall. Bhattacharyya and Maiti [17] observed a
similar pattern of increasing lift coefficient with decrease in gap ra-
tio from 0.5 to 0.1. for Re < 600.
4.4. Time averaged drag coefficient ðCDÞ

The variation of time averaged drag coefficient ðCDÞ of the cylin-
der as function of gap ratios is presented in Fig. 5(b). In general,
there is a rise in drag coefficient with decrease in G/D. At G/D = 4,
that is, when the cylinder is placed far away from the moving wall,
the value of CD is slightly higher than the case of an isolated square
cylinder. Thus, it can be concluded that even at G/D = 4 the moving
wall imparts a small drag force on the cylinder. When the cylinder
approaches the moving wall (i.e., from G/D = 4 to 0.5), CD rises
gradually with increasing gap ratios as the moving wall imparts
high pressure forces on the cylinder resulting in higher drag coef-
ficients. At a critical gap ratio of 0.3, CD drops and again rises with
further decrease in gap ratio. This type of behaviour was also re-
ported in the study of flow past a circular cylinder in the presence
of a moving wall at different gap ratios by Yoon et al. [20] at
Re = 180. A similar behaviour is observed for the drag coefficient
due to pressure forces CDP . Unlike CDP , the drag coefficient due to
viscous friction, CDV , is not affected at the critical gap ratio of 0.3.
CDV monotonously increases with decrement in gap ratio.
4.4.1. Strouhal number
The vortex shedding frequency of the square cylinder repre-

sented by the non-dimensional parameter called the Strouhal
number, St, is presented in Fig. 7. The Strouhal number is calcu-
lated as per Eq. (12). At G/D = 4, the cylinder in the presence of a
plane moving wall has a slightly higher Strouhal number compared
to the isolated case and increases with decreasing gap ratio. For
4 6 G/D 6 1, St increases linearly with G/D due to acceleration of
flow in the gap between the cylinder and the moving wall due to
decreasing gap ratio. When the cylinder is further brought close
to the moving wall (0.4 6 G/D < 1), St starts to decrease gradually
as vortex shedding pattern is greatly altered i.e., two-rows of vor-
Fig. 7. Strouhal number (St) as a function of gap ratio (G/D) for the flow past a
square cylinder near a moving wall.
tex shedding is transformed into single-row vortex shedding.
Bhattcharyy and Maiti This can be realized from the vorticity con-
tours presented in Fig. 4(a). For G/D < 0.4, Strouhal number does
not appear due to suppression of vortex shedding. The three zones,
namely, the twin-vortex shedding zone, single-row vortex shed-
ding zone and the no-shedding zone are clearly indicated in the
figure.

4.4.2. Streamline pattern
Contours of streamlines for the flow past a square cylinder near a

plane moving wall placed at gap ratios 0.1 6 G/D 6 4 is depicted in
Fig. 11(a). The streamlines presented here are time-averaged during
a vortex shedding cycle (instantaneous for the steady flow, G/
D 6 0.3). A perfectly symmetric pattern is observed at G/D = 4 and
2. At G/D = 1, asymmetry sets in due to the modification of the flow
in the presence of moving wall. The streamlines show an asymmet-
ric pattern at G/D = 0.5. The quasi-steady nature of the flow is clearly
evident at G/D = 0.3 and for G/D < 0.3, steady recirculating eddies
are seen as vortex shedding is completely suppressed due to very
small gap ratios between the cylinder and moving wall.

For the case of a isolated square cylinder, trailing edge separa-
tion occurs at Re = 100 [25]. Trailing edge separation is found to oc-
cur at the top surface for G/D = 4 and 2. With decreasing gap ratio
(G/D), along the top surface, the flow separates at the leading edge
and reattaches at a shorter distance close to the trailing edge. With
further decrease in G/D, i.e., for 0.1 6 G/D 6 0.5, the flow separates
at the leading edge but does not reattach on the sides (of the top
surface). At these gap ratios, the fluid from the wake enters the
top surface of the cylinder as seen in Fig. 11(a) for 0.1 6 G/D 6 0.5.

4.5. Heat transfer characteristics

4.5.1. Isotherms
Contours of instantaneous isotherms are presented in Fig. 4(b)

at G/D = 4, 2, 1, 0.5, 0.3, 0.2 and 0.1 for the same instant at which
the vorticity contours in the same figure (Fig. 4(a)) is drawn. When
the cylinder is placed far away from the moving wall the isotherm
pattern shows two rows of warm blobs being convected down-
stream the cylinder. When the cylinder is brought closer to the
moving wall, the bottom row of warm blobs close to the moving
wall are weak and are smaller in size compared to the top row
(cf. Fig. 4 (b) at G/D = 0.5 and 0.4) and they move along the wall.
At G/D = 0.3, the isotherms show a quasi-steady profile as the flow
field becomes quasi-steady in nature due to suppression of vortex
shedding. For G/D P 0.2, the isotherms show a steady pattern since
vortex shedding from the cylinder is completely arrested.

The time-averaged isotherms show a symmetric pattern, along
a line drawn through the centre of the cylinder parallel to the top
and bottom surface, for G/D = 4 and 2 as shown in Fig. 11(b). For
G/D < 2, the isotherms shown an asymmetric profile due to change
in the flow pattern in the presence of moving wall. The boundary
layer becomes very thin along the bottom surface of the cylinder,
with decreasing gap ratios, resulting in higher heat transfer rates
along this surface.

The form of isotherms during a vortex shedding cycle are shown
in Figs. 8–10(c) at G/D = 4,1 and 0.4, respectively. As a passive
scalar, the isotherms mimic the vorticity contours as seen in these
figures. Heat from the cylinder surface is carried away, as warm
blobs, by the vortices that are shed. At G/D = 4, the warm blobs
emanating from the top and bottom surface are equal in size. With
decrease in gap ratio, i.e., the at G/D = 1, the warm blobs emanating
from the bottom surface are smaller in size. With further decrease
in gap ratio (G/D = 0.4), the warm blobs emanating from the top
and bottom surface are unequal is size and the one that is evolving
from the bottom surface becomes smaller and is carried away by
the moving wall.
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4.5.2. Time evolution of mean Nusselt number (NuM) of the cylinder
Instantaneous variation of the time evolution of mean Nusselt

(NuM) of the cylinder is presented in Fig. 12 as a function of non-
dimensional time (s) for different gap ratios. The profiles at G/
D = 4, 2, 1, 0.5 and 0.4 shows that NuM oscillate periodically with
time. When vortices are shed from the cylinder, heat is transported
to the external fluid stream resulting in heat transfer augmentation
that depends on gap ratio. At G/D = 0.3, the flow around the cylin-
der achieves a quasi-steady state and hence the thermal field, too,
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wall, the flow remains steady and as a result the thermal field, too,
achieves a steady state that results in a steady profile of NuM with
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4.5.3. Local Nusselt number along the cylinder surface ðNuÞ
The time averaged local Nusselt number ðNuÞ along the surface
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Fig. 12. Time evolution of mean Nusselt number (NuM) of the square cylinder at
various gap ratios for the flow past a square cylinder near a plane moving wall.

Fig. 13. Distribution of time-average local Nusselt (Nu) number along the surface of
the square cylinder at various gap ratios, G/D.
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and for the isolated case. Heat transfer along the faces seems to be
strongly dependent on gap ratio. With a decrease in gap ratio, the
local Nusselt number along the top-half of the front face (AB) de-
creases while it increases with decreasing gap ratio along the bot-
tom-half of the same face. Along the bottom face (BC) of the
cylinder, Nu increases with an increase in gap ratio. When the
gap ratio decreases, the fluid flowing between the bottom surface
of the cylinder and the moving wall carries away more heat result-
ing in high heat transfer rates. Along the bottom-half of the rear
face (CD), there is no significant change in Nu for 0.1 6 G/D 6 4
while it increases with decreasing gap ratio along the top-half of
the rear face. The rear face has the highest heat transfer rate at
G/D = 0.1 compared to any other gap ratio.

4.5.4. Average Nusselt number along the faces ðNuf ;r;t;bÞ
The average Nusselt number along four different faces of the

cylinder shows an interesting feature and is presented in
Fig. 14(a) as a function of G/D. In general, for an isolated cylinder,
the front face has high Nu while the rear face has the least value
of Nu as shown in Fig. 14(a). The top and bottom surface have
equal values. But for the case of a cylinder near a plane moving
wall, the situation is different. Although the highest and lowest
heat transfer rate occurs along the front and rear face, the top
and bottom surface do not have the same heat transfer rates. The
presence of moving wall aids in increasing the average Nusselt
number and at the same time, it has a negative effect on the top
surface. That is, the heat transfer along the top surface decreases
with decrement in gap ratio.

Compared to the isolated case, Nuf remains constant for 1 6
G/D 6 4 and drops when G/D is reduced from 1 to 0.1. Along the
bottom face, there is a gradual increase in Nub when 1 6 G/D 6 4.
For G/D > 1 it rises rapidly. It should be noted that at G/D = 0.1,
the Nub surpasses the value of Nuf at the same G/D. A gradual
decrease in Nut is observed with decreasing gap ratio. The recircu-
lating wake formed behind the cylinder enters the top surface and
thus the thickness of thermal boundary layer formed along the top
surface (cf. the streamlines and isotherms shown in Fig. 11(a) and
(b) at G/D = 0.1) increases with decreasing G/D that eventually
results in lower heat transfer rates along this face.
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4.5.5. Mean Nusselt number of the cylinder (NuM)
The effect of placing a cylinder at various gap ratios from a mov-

ing plane wall on the mean Nusselt number (NuM) of the cylinder,
calculated as per Eq. (15), is shown in Fig. 14. In general, when an
isolated cylinder is brought towards a moving wall, heat transfer
enhancement occurs that depends on the gap between the cylinder
and the plane moving wall. When the cylinder is sufficiently far
away from the moving wall, the mean Nusselt number approaches
the isolated case. For 0.5 6 G/D 6 4, a linear increase in NuM ob-
served. At G/D = 0.4, it starts to decline and dips at G/D = 0.3 to a
low value (but higher than the case when G/D = 1.5) and it in-
creases enormously when G/D is further decreased as shown in
Fig. 14.
4.6. Enhancement in heat transfer

The enhancement in heat transfer or the percentage increase
in heat transfer compared to the isolated case is presented in
Fig. 15 as a function of G/D. By displacing the cylinder near a
wall from G/D = 4 to 0.5 one can achieve a gradual increment
in heat transfer rates. As much as 7.9% enhancement in heat
transfer can be achieved at G/D = 0.5 by placing a cylinder near
a plane moving wall compared to the case of an isolated cylin-
der. Placing the cylinder further close to the moving wall, but
up to G/D = 0.3, diminishes the heat transfer rates. For example,
at G/D = 0.4 the percentage increase in heat transfer rate is
7.25%. Whereas at G/D = 0.3, it further reduces to 5.3%. When
the cylinder is placed too close to the moving wall, i.e., at
G/D = 0.2 and 0.1, the percentage increase in heat transfer is
enormous compared to the other cases with 9.25% and 27.45%,
respectively.
5. Summary and Conclusions

A numerical study of flow and forced convection heat transfer
from a square cylinder considering the effect of gap ratios (G/D) be-
tween the cylinder and a moving plane wall has been made for
0.1 6 G/D 6 4 at Re = 100. The fluid is air and is moving with an
uniform velocity. The plane wall is also moving with the same
velocity as the uniform stream. Numerical simulation were per-
formed using finite volume method based on SIMPLE algorithm.
Some of the important conclusions from the study are presented
as follows:

1. The flow is unsteady and periodic for 0.4 6 G/D 6 4. Two-row
vortex shedding is observed for 1 6 G/D 6 4 while the flow is
characterized by single-row of vortices for 0.4 6 G/D < 1. At G/
D = 0.3, the flow is quasi-steady and for G/D < 0.3 vortex shed-
ding is suppressed due to the presence of moving wall.

2. The average lift ðCLÞ and drag coefficient ðCDÞ of the cylinder
increase with a decrement in gap ratio. The drag coefficient
increases almost linearly with decrease in gap ratio and
suddenly drop when the flow reaches a quasi-steady state at
G/D = 0.3 and again starts to increase with decrement in gap
ratio. For large gap ratios, these coefficients approach to their
respective isolated cylinder case.

3. The average pressure coefficient ðCpÞ along the bottom face and
the bottom-half of the front face shows a significant change
with decrease in gap ratio that results in an increase in the val-
ues of mean lift and drag coefficient. The Strouhal number (St)
increases linearly with decrease in G/D from 4 to 1. With a fur-
ther decrease in the gap ratio up to 0.4, it starts to reduce dras-
tically due to alteration of the flow pattern in the presence of
moving wall.
4. The average Nusselt number along the bottom surface ðNubÞ of
the cylinder rises gradually with decrement in gap ratio.
Whereas, at the top face ðNutÞ it diminishes with decrease in
gap ratio. The average Nusselt number at the front face does
not show any significant change for 1 6 G/D 6 4 but reduces
for G/D < 1. The study indicates that the presence of moving
wall always results in augmentation of heat transfer from the
cylinder compared to the isolated case. The augmentation is
more prominent at gap ratios < 0.3. The obtained results indi-
cate that as much as 27.45% increase in mean Nusselt number
can be achieved, compared to the isolated case, by placing the
cylinder at G/D=0.1.
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