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Abstract Natural convection heat transfer from a porous cylinder put at various positions in a square, cooled
enclosure, with air as the working fluid, is investigated in this work. The following setups are taken into
account: The hot cylinder is placed in the middle of the enclosure, near the bottom, top, right sides, along
diagonal as top-diagonal and bottom-diagonal. The cylinder and the enclosure walls are kept hot and cold,
respectively. The lattice Boltzmann method is used to perform a numerical analysis for Rayleigh number
104 ≤ Ra ≤ 106 and Darcy number 10−6 ≤ Da ≤ 10−2. The results are plotted as streamlines, isotherms,
and local and mean Nusselt number values. The amount of heat transported from the heated porous cylinder is
determined by varying Ra, Da, and the cylinder location. Even at a lower Rayleigh number (104), the average
Nusselt number grows by nearly 70 % as the cylinder moves from the centre to the bottom and 105% as it
moves to bottom-diagonal location when Da = 10−2. At Ra = 106 and Da = 10−2, the heat transfer rate of
the cylinder located near the corner of the enclosure at the bottom wall increases by approximately 33% when
compared to the case of the cylinder in the centre. Convective effects are more noticeable when the cylinder is
positioned towards the enclosure’s bottom wall. This research is applicable to electronic cooling applications
in which a collection of electronic components is arranged in a circular pattern inside a cabinet.

Keywords Porous cylinder · Enclosure · Darcy number · Natural convection · Lattice Boltzmann method

List of symbols

C1, C2 Binary constants
D Diameter of cylinder (m)
cF Non-dimensional Forchheimer term
δ Distance from centre (δx or δy in x and y direction)
cs Speed of sound (ms−1)
G Body force due to gravity (N)
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Da Darcy number K
D2

N Number of lattices on the cylinder
dp Particle diameter (m)
NuL Local Nusselt number ∂θ

∂n

ei Discrete lattice velocity in direction i , �xi
�t

Nu Nusselt number hL
K

F Body force due to presence of the porous medium (N)
p Dimensionless pressure p∗

ρu2∞
Fi Total force term due to porous medium (N)
Pr Prandtl number ν

α
Fb Boussinesq force term (N)

Ra Rayleigh number gβ�T L3

αν

g Gravitational acceleration (ms−2)
u Non-dimensional x-component velocity (ms−1)
fi Particle distribution function along ith link direction
v Non-dimensional y-component velocity (ms−1)
f eqi Equilibrium distribution function along ith link direction
U Actual velocity (ms−1)
V Auxiliary velocity (ms−1)
gi Temperature distribution function along ith link direction
wi Weighing factor in direction i
geqi Equilibrium distribution function of temperature ith link direction
x,y Non-dimensional horizontal and vertical coordinate
L Length of enclosure (m)
x∗,y∗ Dimensional horizontal and vertical coordinate

Greek symbols

ρ Fluid density (kg m−3)
ε Porosity
τ Dimensionless relaxation time for density
ν Fluid kinematic viscosity (m2s−1)
τ ′ Dimensionless relaxation time for temperature
μ Fluid dynamic viscosity (N s m−2)
t Non-dimensional time t∗u∞

H
Λ Viscosity ratio μe

μ

�t Time step (s)
α Thermal diffusivity (m2s−1)
�x Lattice space
β Thermal expansion coefficient Ra α ν

g�T L3 (K−1)

θ Dimensionless temperature T−T∞
Tw− T∞

σ Thermal conductivity ratio

Subscripts

avg Average
w Wall
∞ Far field value
e Effective
◦ Inlet value
f Fluid
M Mean value
l Local value of variable
i Lattice link direction
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Superscripts

∗ Dimensional form of variables

1 Introduction

Natural convection in an enclosure is a fascinating subject of study because of its numerous applications in the
cooling electronic components, nuclear reactors, solar panels, building thermal design, and heat exchangers.
Electronic components are the backbone of computers in today’s technological age. Massive research efforts
are underway because it has applications in almost every industry imaginable, including aerospace, biomedical,
defence, research organisations, and enterprises. Microchips are also stacked in an optimised space due to the
miniaturisation of electronic devices. These gadgets require appropriate cooling to function properly. External
fans with modest forced convection and additional buoyant effects are prevalent. To reduce power consumption
and increase heat dissipation, an appropriate coolingmechanismmust be designed. The literature [1–5] contains
numerous studies on flow and heat transfer from cylinders in the field of thermal engineering. These classic
studies in fluid mechanics and heat transfer have theoretical and practical value.

Porous medium is widely known for its efficient cooling [1]. The goal of this research is to study the natural
convection heat transfer from a hot porous cylinder in an enclosure. The analysis is carried out by changing the
placement of the cylinder and measuring the change in heat transfer rate. Heat transfer from solid or porous
bodies in an enclosure has been carried out by several researchers because of its practical significance. House et
al. [2] analysed natural convection heat transfer in a differentially heated chamber containing a square cylinder.
With air as the working fluid, the influence of dimensionless body size (W/L = 0, 0.5, 0.9), Rayleigh number
(103–106), and thermal conductivity ratio of solid body and fluid (0.2 and 5) on heat transfer was investigated.
Convective effects can be lessened by increasing the body’s size (> 0.5) and the value of thermal conductivity
ratios, according to their findings. The rate of heat transfer is reduced when the thermal conductivity ratio is
higher for the same compact size. Alsabery et al. [3] investigated conjugate natural convection for Rayleigh
numbers 102–106 with Al2O3–H2O nanofluid using Buongiorno’s two-phase model. The enclosure’s corners
were differentially heated, while the rest of the walls are adiabatic, and the heat-conducting solid square block
is in the middle. The effect of thermal conductivity ratio (0.28, 0.76, 1.95, 7, and 16) and dimensionless solid
block size (0.1–0.7) was investigated. The heat transfer performance of partially cooled and heated enclosures
is stated to be influenced by the size of the solid block and the thermal conductivity ratio.

In addition, studies using circular cylinders in an enclosure have been discussed in the archival literature.
Moukalled and Acharya [4] investigated natural convection heat transfer in a square enclosure with varied
aspect ratios (D/L =0.1–0.3) and Rayleigh numbers (104–107) using a circular cylinder heated isothermally.
It was discovered that for lower Rayleigh numbers (104), conduction effects dominate. Convection effects
become more significant as the Rayleigh number increases, resulting in a quicker heat transfer rate. Using
varying temperature boundary conditions, Roychowdhury et al. [5] carried out a natural convection analysis
in an enclosure with an inner circular cylinder. Walls that are vertically insulated and heated with a cooled
cylinder were also researched. The impacts of the Rayleigh number (104–106), Prandtl number (0.7 and 10),
thermal boundary conditions, and aspect ratio (1.5, 2.5, 4, and 5) were investigated. The Nusselt number
increases when Pr = 10. At aspect ratios of 4 and 5, thermal stratification was noticed as well. Nabavizadeh
et al. [6] investigated the natural convection in an enclosure having a centrally placed sinusoidal cylinder. The
amplitude and undulations on the cylinder surface are varied and different shapes are examined for Rayleigh
number 103–106. The results report that increment in the number of undulations from 0.4 to 0.8 decreases the
Nusselt number as fluid circulation hinders in space within gaps of cylindrical surface. On further increase of
undulations beyond 8, Nusselt number enhances as the shape converts to a circle.

Using the lattice Boltzmann approach, Jami et al. [7] investigated laminar convection flow in a differentially
heated cavity containing aheat-conducting cylinder forRayleighnumbers 103–106 , Pr = 0.71and temperature
difference ratio (0, 10, 50). According to the research, the Nusselt number varies linearly with the temperature
difference ratio for the sameRayleighnumber.The averageNusselt number of hotwalls drops as the temperature
difference increases, whereas cold walls show the opposite pattern. In addition, Jami et al. [8] investigated
the effect of cylinder position on convective heat transfer for Ra = 103–106 , Pr = 0.71 and temperature
difference ratio (0 and 50). In the case of a cold cylinder (temperature difference ratio = 0), the maximum rate
of heat transfer was seen near the centre location. When the heat-generating cylinder is moved from the left to
the right and from the bottom to the top of the enclosure, the rate of heat dissipation on the hot wall decreases
while the rate of heat dissipation on the cold wall increases.
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Kim et al. [9] explored natural convection in a cold chamber containing a cylinder for Rayleigh numbers
103–106. The vertical position of the cylinder inside the enclosure is changed. The cylinder’s position is
reported to have a big influence on convection-induced heat transfer. The profile of total surface averaged
Nusselt number of enclosure and cylinder for various vertical locations is symmetric for Ra = 103 and 104,
with the lowest value when the cylinder is at the centre. The natural convection heat transfer from a uniformly
heated (isoflux) circular cylinder inside a cavity was investigated by Hussain and Hussein [10]. The cylinder’s
vertical position was varied vertically (− 0.25 L to 0.25 L) and the Rayleigh number was altered between 103

and 106 in their experiment. Because the average Nusselt number fluctuates nonlinearly, the placement of the
cylinder has a substantial impact on heat transport. When fluid flows near the enclosure’s top and bottomwalls,
a thin boundary layer forms.

Yoon et al. [11] investigated natural convection heat transfer from a circular cylinder in a square enclosure
at Ra = 107. The heated cylinder’s position inside the cooled container is varied in the vertical direction. The
flow pattern inside the enclosure varied with a change in the location of the heated cylinder, indicating the
transition from a steady to unsteady regime. It was also discovered that when the cylinder position is between
0.05 and 0.18 units below the centre, the flow and heat transfer remain constant. In a similar study by Kang
et al. [12], a heated cylinder dislocated along the horizontal and diagonal lines in the cavity was considered.
The effect of arbitrary cylinder position on transitions from unsteady to steady and steady to unsteady was
investigated. Thermal plumes, vortices, and a sequence of cells known as Benard cells were found to control
flow unsteadiness at the enclosure’s corners and centre. Along the horizontal line, the critical points were at a
distance of 0.1L from the centre in the left and right directions. In the diagonal line, near the left upper corner,
0.05L and 0.16L were the lower and upper bounds for steady state. In the right lower quadrant, 0.2L and 0.09L
were the lower and upper bounds. Beyond these distances, the flow and thermal fields were in a steady state.

Nithiarasu et al. [13] analysed a porous filled differentially heated cavity with constant or variable porosity
(0.4–0.9) for Rayleigh number 103 − 5 × 109. The results show that thermal and flow field changes with
porous layer thickness. Vijaybabu [14] conducted a numerical investigation of heat transfer from a porous
circular cylinder inside a cavity filled with CuO–H2O nanofluid. The effect of permeability and volume
fraction of nanoparticles was analysed for Rayleigh numbers 103–106 and Darcy numbers 10−2 to 10−6. The
study revealed that the location of maximum entropy generation depends on permeability. The investigation
of entropy generation and thermosolutal convection in a rectangular enclosure attached to a porous wall was
conducted by Hu and Mei [15]. The parametric study analyses the effect of buoyancy ratio, Darcy number
(10−9 to 10−1), enclosure inclination (0◦ − 90◦), porous wall thickness (0–1), and Soret and Dufour number
(0–1.5). The authors predicted that increasing the Darcy number enhances the average Nusselt number by
90%, but in the case of the thicker permeable wall, the heat transfer performance declines up to 50%. At an
inclination angle of 90◦, minimum heat transfer rates are obtained.

The literature has extensive numerical research on natural convection heat transfer in a closed cavity
and solid heated cylinders of various forms placed inside an enclosure. There has been no study of natural
convection from a porous circular cylinder and the influence of its location inside a confined cooled enclosure
to the authors’ best knowledge. This research tries to close that gap. The goal is to investigate the impact of
various parameters such as Rayleigh number, Darcy number, and cylinder placement on flow and heat transfer.
It also allows for the optimal placement of a porous cylinder in an enclosure for maximum heat dissipation.
The lattice Boltzmann method is used to simulate flow and heat transport around and through a porous circular
cylinder in an enclosure in this numerical study. It is investigated how permeability and Rayleigh number
affect flow and heat transfer. This research aids in the comprehension of flow dynamics and convective heat
transfer in an enclosure. This study’s representative application is the thermal management of heat exchangers
and electronic components.

2 Mathematical formulation

2.1 Problem description and geometrical configuration

The flow and heat transfer from a heated porous circular cylinder inside a two-dimensional square enclosure
of size L are investigated. The centre of the axis lies at the geometric centre of the enclosure. Figure 1 depicts
the computational domain explored for this numerical analysis. The heated cylinder inside the enclosure is
maintained at a constant temperature Th . The temperature of the enclosure’s walls is lower (TC ) than that
of the cylinder. The cylinder is 0.4 L in diameter. Heat transfer from the cylinder is evaluated in five various
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Fig. 1 Schematic diagram of the computational domain along with the imposed boundary conditions

configurations:Centre placement (Ccyl = 0.5L, 0.5L), top placement (Ccyl = 0.5L, 0.75L), bottomplacement
(Ccyl = 0.5 L, 0.25 L), right placement (Ccyl = 0.75 L, 0.5 L), top-diagonal (Ccyl = 0.75 L, 0.75 L), and
bottom-diagonal (Ccyl = 0.25 L, 0.25 L). Here, Ccyl is the centre of the cylinder. The working fluid is
presumably air (Pr = 0.71).

The following assumptions are made:

• Flow is two-dimensional, steady, laminar, and incompressible.
• Fluid is Newtonian and the fluid (air) properties are constant.
• Local thermal equilibrium is maintained between the porous cylinder and fluid flowing through and around
it.

• The radiation effects of the cylinder are negligible.

2.2 Governing equations

The subsequent non-dimensional governing equations represent natural convection induced flow and heat
transfer in a two-dimensional enclosure with a porous body [13].

∂u

∂x
+ ∂v

∂y
= 0 (1)
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Here, Prandtl number (Pr ) is expressed as Pr = μCp/k f . C1 and C2 are the binary constants having
value 0 for the fluid region and 1 in the porous region. k f is the thermal conductivity of the fluid. Thermal
properties of porous material (ks) and fluid (k f ) are assumed identical, (σ = 1, keff = k f = ks) and the
effective thermal conductivity is given as follows [16–18]:

keff = εk f + (1 − ε)ks (5)

The value of thermal conductivity ratio (σ ) of solid porous material and fluid is considered to be unity
for showing the flow effect of non-homogeneous variation in porosity [13]. The non-dimensional governing
equations are attained with these characteristic scales as

x = x∗

L
, y = y∗

L
, t = t ∗ u∞

L
, p = p∗L2

ρα2 , u = u∗L
α

, v = v∗L
α

, θ = T − Tc
Th − Tc

(6)

Here, the superscript * denotes the dimensional form of the variable.

2.3 Lattice Boltzmann method

The lattice Boltzmann method (LBM) is adopted for carrying out numerical simulations. LBM is a mesoscopic
approach. In this method, the domain is discretized into lattices. Each lattice experiences collision and stream-
ing. The governing parameters such as velocity, density and temperature are calculated with these steps. Values
of velocity in the x and y direction, density, and temperature are calculated for all lattices across the domain.
The convective terms in the LB equation are linear in contrast to the nonlinear terms in the Navier–Stokes
equation.

The probability distribution function depends on the relaxation factor value, and macroscopic properties
(such as density, velocity, and temperature) are mentioned in terms of LB units. So, all these values are mainly
governed by kinematic viscosity (for fluid flow) and thermal diffusivity (for temperature). Hence, distribution
function f and g will completely depend on these two parameters.

2.3.1 Lattice Boltzmann equation for velocity field

Collisions must occur between particles at each node before streaming can begin. The collision equation is
given as follows [19]:

fi (x + ei�t, t + �t) − fi (x, t) = −1

τ

[
fi (x, t) − f eqi (x, t)

] + �t Fb + �t Fi (7)

Here, fi is the instantaneous particle distribution function, feq is corresponding equilibrium distribution
function, ei is velocity direction in vectors of particles in the lattice, Fi , force term for drag effects due to
the presence of porous medium and Fbaccounts for natural and forced convective effects. The D2Q9 model
(Fig. 2) is used to simulate two-dimensional flow in this investigation. In this model, speeds of particles are
expressed as [19]

ei =
⎧⎨
⎩

(0, 0), i = 0
(cos[(i − 1)π/2], sin[(i − 1)π/2])e, i = 1 − 4
(cos[(2i − 9)π/4], sin[(2i − 9)π/4])√2e i = 5 − 8

(8)

The BGK collision operator with single relaxation time (SRT) is denoted on the right side of Eq. (7). The
particles relax towards equilibrium with a relaxation factor given by τ at each collision phase. The value of
τ is the same for all particles in each lattice in the SRT model. The Chapman–Enskog equation links the LB
fluid’s viscosity to its dimensionless relaxation time. It is written as [19]

v =
(

τ−1
2

)
�t c2s (9)
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Fig. 2 Illustration of a lattice node for the D2Q9model for 2D problems [20]

In Eq. (7), a force term Fi is added, which explains the drag effects occurring due to the existence of a
porous medium (porosity - ε) with a BGK collision factor. This force term is disabled by defining a value of
0 in the clear fluid region. The force term for the porous region is expressed as [19]

Fi = wiρ

(
1 − 1

2τ

)[
3(ei · F) + 9

ε
(ei ·U )(ei · F) − 3

ε
(U · F)

]
. (10)

We have used D2Q9model in our study, hence cs = ck√
3
. (cs is the speed of sound and ckare unit vectors

along the lattice streaming directions) [19]. Here, F denotes the Darcy–Forchheimer force or the force of the
body arising in porous region, which is considered to be both viscous and inertial forces and can be written as
[19]

F = − εv

K
U − εcF√

K
|U |U + εG. (11)

In the above equation, v which denotes kinematic viscosity of the fluid, K is the permeability of the porous
medium, cF = 1.75/

√
150ε3, is the dimensionless Forchheimer term, |U | = √

u2 + v2, where u and v are the
components of velocity in the x and ydirections, respectively, and G is the force of the body due to gravity.
The updated equilibrium distribution function with terms of porosity is related as [19]

f eqi = wiρ

[
1 + 3(ei ·U ) + 9

2ε
(ei ·U )2 − 3

2ε
(U ·U )

]
. (12)

Here, wi denotes the weighting factor for each lattice link in the lattice arrangement. For the D2Q9 model,
the value of weighting factors iswo = 4/9, wo = 1/9 for i = 1, 2, 3, 4 andwi = 1/36 for i = 5, 6, 7, 8. After
meso-level collision and streaming steps are performed with suitable boundary conditions, the macroscopic
characteristics are calculated. The sum of the lattice distribution function of each point addresses the density
of fluid at that point. Hence, the density (ρ) and velocity (U ) of fluid can be determined through distribution
function values as given below [19]

ρ =
8∑

i=0

fi (13)

ρV =
8∑

i=1

ei fi + �t

2
ρF. (14)

Here, V is the auxiliary velocity due to the presence of the porous body. The actual velocity in this region
can be evaluated with the following relation:

U = V

c0 +
√
c20 + c1 |V |

(15)
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The two parameters coand c1 in Eq. (14) are given by

c0 = 1

2

(
1 + ε

�t

2

v

K

)
; c1 =

(
ε
�t

2

cF√
K

)
(16)

Density variations are within the fluid. The fluid motion is driven by temperature or mass gradient, i.e.
buoyancy force. Hence, there is an extra force term needed to be considered in solving the LB equation which
is calculated by Boussinesq approximation. An additional force term Fbis added to the collision equation for
natural convection. The calculation is done with Boussinesq approximation and is expressed as [19]

Fb = 3wi gβθeiy (17)

Here, eiyrepresents velocity vectors in the y-direction.

2.3.2 Lattice Boltzmann equation for temperature field

The lattice Boltzmann equation describing the temperature field is written as [19]

gi (x + ei�t, t + �t) − gi (x, t) = − 1

τ ′
[
gi (x, t) − geqi (x, t)

]
. (18)

The Chapman–Enskog equation for calculation of thermal relaxation time is given as

α = (τ ′ − 1

2
)�t c2s . (19)

The equilibrium distribution function geq can be expressed as

geqi = wiθ [1 + 3(ei · U )] . (20)

The fluid temperature θ is calculated from “g” distribution function as

θ =
8∑

i=0

gi . (21)

2.4 Boundary conditions

No slip boundary condition and constant temperature boundary conditions (θ = 0) are applied on the walls.
These are expressed in terms of particle distribution functions. In terms of the lattice Boltzmann method, the
boundary conditions used [19] are shown in Table 1. For the porous region, the porous force term in the flow
field is applied according to Eq. (10). In the thermal field, a higher temperature (θ =1) is implemented in the
entire porous region. We have defined a region for the porous circular body by the equation

√
(x − xcen)2 + (y − ycen)2 ≤ radi. (22)

A dummy array is defined in the entire domain and its value is defined as “zero” in the clear fluid region
and as “one” in the porous circular region. Further, we have imposed θ = 1 in the entire domain of the porous
region and not just at the surface. Also, θ = 0 is implemented in the fluid region. Thermal boundary condition
is defined by following equation

gi = θ ∗ (wi + wi )−gi . (23)

Here, gi represents distribution function for thermal field while gidenotes corresponding opposite link, wi
is the weighting factor for corresponding lattice link and wi is the corresponding opposite link.
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Table 1 Boundary condition used on the walls of the enclosure while employing LBM

Wall Wall boundary conditions Thermal boundary conditions

Left f1 = f3, f5 = f7, f8 = f6 g1 = −g3, g5 = −g7, g8 = −g6
Right f3 = f1, f7 = f5, f6 = f8 g3 = −g1, g7 = −g5, g6 = −g8
Top f4 = f2, f8 = f6, f7 = f5 g4 = −g2, g8 = −g6, g7 = −g5
Bottom f2 = f4, f6 = f8, f5 = f7 g2 = −g4, g6 = −g8, g5 = −g7

2.5 Dimensionless parameters

The dimensionless parameters used in this study are Rayleigh number andDarcy number. TheRayleigh number
(Ra) is calculated on the basis of the number of lattices in characteristic height and is given by

Ra = gβ�T L3

να
(24)

In this study, the length of enclosure L is considered as the characteristic height. Porous region is considered
as the packed bed of spheres. The number of spheres, size, and space between them decides the amount of
fluid flowing through the permeable region and indicates the porosity. The diameter of these spheres is denoted
by dp. The pressure drop of flowing fluid through a packed bed of spheres is evaluated through the Carman–
Kozeny equation. The Darcy number (Da) represents the non-dimensional permeability of the porous body
and is given as

Da = K

D2 = K

N 2 . (25)

Here, D is the characteristic height of a porous cylinder and K denotes permeability. Darcy number is also
determined through the Carman–Kozeny relation [22–24] in terms of porosity (ε) as

Da = K

D2 = K

N 2 = 1

180

ε3 d2p
D2(1 − ε)2

(26)

The equation calculates pressure drop of flowing fluid through a packed bed of spheres.

3 Numerical methodology

In this study, flow and heat transport are simulated using a FORTRAN code based on the lattice Boltzmann
method. According to the equations stated in the preceding section, the flow and temperature boundary con-
ditions are modified. The equation for collision is modified with additional force terms which account for
natural convection. Buoyant force (Fb) is defined with Boussinesq approximation in the entire domain which
comprises the acceleration due to gravityg. Its value depends on the Rayleigh number. In the domain, the initial
velocity on all nodes is set to zero and the temperature on the heated region is set to 1. The stability of the
solution depends on the value of

√
gβ�T Lwhich should be less than or equal to 0.1 [19]. The computations

are terminated when the following convergence is achieved:

√∑
i j [un+1

i j − uni j ]
2

√∑
i j [un+1

i j ]2
≤ 1 × 10−6,

√∑
i j [vn+1

i j − vni j ]
2

√∑
i j [vn+1

i j ]2
≤ 1 × 10−6&

√∑
i j [θn+1

i j − θni j ]
2

√∑
i j [θn+1

i j ]2

≤ 1 × 10−6. (27)

Here, i and jdenote locations of the nodes, n denotes the time step, u(i, j) is the velocity in the xdirection,
v(i, j) is the velocity in the y direction, and θ (i, j) is the temperature.
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Table 2 Comparison of the mean Nusselt number of the enclosure with literature [6] at Pr = 0.7

Ra Present study Nabavizadeh et al. [6] Error (%)

103 1.57 1.63 3.68
104 1.60 1.65 3.03
105 2.45 2.43 0.82
106 4.46 4.48 0.44

The enclosure walls are cold, and the heated circular cylinder is centrally placed inside the cavity

Table 3 Comparison of the mean Nusselt number of the enclosure with literature [13] at Pr = 1.0

Da Ra Present study Nithiarasu et al. [13] Error (%)

10−2 103 1.025 1.02 0.487
104 1.693 1.69 0.177
105 3.816 3.80 0.419
5×105 6.180 6.20 0.322

In the study carried out by Nithiarasu et al. [13], the differentially heated cavity is filled with a porous medium having adiabatic
top and bottom walls

3.1 Code validation

The present lattice Boltzmann code is validated by comparing the results for the Nusselt number in the case of
natural convection heat transfer from a solid cylinder placed centrally in an enclosure. To consider the variation
of different parameters, validation is done for the Rayleigh number, Ra = 103to106 and the cylinder diameter,
D = 0.4 × L . The obtained average Nusselt number on the wall accords with the values in the literature, as
shown in Table 2. The numerical results obtained with the present LBM code show a good agreement with the
results of the literature. Minimal deviation in results with the present code is due to the discretization method.
The study by Nabavizadeh et al. [6] is based on the Lattice Boltzmann Method. The results of Nithiarasu et al.
[13] are also validated for Da = 10−4 and 10−2. The satisfactory validation of the code provides confidence
in the results obtained in the present study. The computed average Nusselt number compares well with the
literature data as presented in Tables 2 and 3.

3.2 Grid dependence study

The computational domain is generated with a two-dimensional uniform mesh. Different grids are obtained
for the various arrangements of circular cylinders considered in the study. The accuracy of results depends on
grid size and characteristic height (L) of the enclosure. In LBM, the collision equation consists of a relaxation
factor, which depends on the characteristic height. This factor plays an important role in the stability of a
solution. Also, a higher grid size provides more stable and accurate results. The convergence rate of the
solution decreases with an increase in the mesh size as the initial velocity decreases. Hence, an optimum size
of the mesh is required for the study. The variation of the average Nusselt number on different mesh sizes is
checked. Test simulations were done with 100 × 100, 200 × 200, 250 × 250 and 300 × 300 grid sizes. The
size of each lattice is 1. The flow and heat transfer phenomenon near the porous region needs to be captured
with utmost accuracy. Due to this fact, the characteristic height of the porous circular region is 0.4 times
domain height i.e. 0.4×L. The grid independence study is done with the extreme parameters, Da = 10−6 and
Da = 10−2 and intermediate value of Rayleigh number, 105 and the results are compared with a finer grid
(300×300). It is observed that the results obtained beyond 250×250 mesh show less variation. The difference
in the Nusselt number results between the coarse grid and the fine grid is less than 0.25%. It would generate
results irrespective of the number of lattices in a grid. Considering the accuracy of results and computational
time, 250× 250 mesh size is found to be enough. Hence, 250× 250 mesh is considered for further numerical
simulations (see Table 4).
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Table 4 Grid dependence analysis

Mesh size Da = 10−6 Da = 10−2

NuM % Difference NuM % Difference

100 × 100 2.3966 1.6832 4.1018 0.6746
200 × 200 2.4376 0.3413 4.1296 0.2429
250 × 250* 2.4460 0.1995 4.1397 0.2228
300 × 300 2.4509 – 4.1489 –

*Represents the mesh used in this study for further calculations

4 Results and discussion

A numerical analysis is carried out to investigate the flow and heat transport from a porous circular cylinder in
an enclosure. The simulations are performed using the lattice Boltzmann method. The following parameters
are used to investigate the impact of cylinder position on heat transport:

• Rayleigh Number (Ra) = 104, 105, and 106

• Darcy number (Da) = 10−6, 10−4, and 10−2

• Porosity (ε) = 0.629, 0.977, and 0.993 corresponding to Da = 10−6, 10−4, and 10−2, respectively.

The diameter of the cylinder is 0.4 L. From the centre of the enclosure, the cylinder’s position is varied
horizontally, vertically and diagonally. Accordingly, the cylinder is moved to top, bottom, right, top-diagonal
and bottom-diagonal. Since the flow and thermal characteristics are the same when the cylinder is placed on
the left, top-left-diagonal and bottom-right-diagonal, these cases are not presented. The sections that follow
take a closer look at the results.

4.1 Local Nusselt number

Nusselt number is a dimensionless parameter, defined as the ratio of convective to conductive heat transfer at
the surface. It determines the effectiveness of thermal systems in heat dissipation. The local Nusselt number
for each wall of the enclosure is calculated as

NuL = −∂T

∂n
(28)

Figure 3 presents the local Nusselt number along the cold surface of the enclosure walls for different
positions of the cylinder for Ra = 104–106. The distribution of local Nusselt numbers is symmetric about the
top (A–B) and the bottom wall (C–D) of the enclosure. However, along with the right (B–C) and left (D–A)
walls variations are asymmetric and alike for different vertical cylinder locations (i.e. top, centre, and bottom).

At Ra = 104 (Fig. 3a, b), the maximum value of the local Nusselt number is obtained at 0.25 L at mid
(0.5 L) of the bottom wall when the cylinder is placed at bottom location. Another peak is obtained at 0.25 L
of bottom and left wall when the cylinder is placed at bottom-diagonal position. These two locations of the
cylinder have thinner boundary layer (see Fig. 8), in the region between the cylinder and bottom wall, which
indicates more substantial convective effects. However, the minimum value close to zero is observed at all
endpoints of walls. The variation along the right and left walls is analogous because of symmetrical thermal
plumes along the vertical centreline of the enclosure. Moreover, with the increase in the Darcy number, a
similar trend is observed and a minor increment in the magnitude of the maximum local Nusselt number is
attained. The maximal value is obtained at Da = 10−2 due to the enhancement in permeability.

When the cylinder is placed at the centre, the local maxima value is seen at the midpoint of the top wall
(i.e. A–B). It occurs due to lower density hotter fluid flowing upwards. As it hits directly in the middle of the
top wall which can be certified by Fig. 5a–c and 8a–c. The fluid density in the lower region of the enclosure is
slightly higher, and hence, the intensity of heat transfer rate is lower near the bottom wall. The left and right
walls show a similar trend, and its local maxima lies at a point slightly before its midpoint. The variation along
the top wall and the bottom wall rises until reaches a maximum value in the midpoint of the wall and then
falls to a value close to zero near endpoints. At Da = 10−2, the distribution curve for the bottom wall (C–D)
becomes more steep and the local maxima value decreases.
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Fig. 3 Variation of local Nusselt number along the enclosure wall for different vertical locations of the cylinder at various Darcy
numbers (10−6, 10−4 and 10−2) for a, b Ra = 104; c, d Ra = 105; e, f Ra = 106

As the cylinder is shifted towards the top wall, the distribution curve (Fig. 3a) rises significantly from point
A to B. It attains local maxima at the wall’s midpoint due to dense isotherms rising upwards in the region
between the top wall and the cylinder. Along with the right (B–C) and left (D–A) wall, the value of the local
Nusselt number increases continuously till the point after its midpoint. A slight shift in this point is noticed
with an increase in Darcy number due to thermal plumes pointing towards the wall. A steep distribution curve
exists along the bottom wall from C–D as the distance between wall and cylinder increases. Hence, it results in
weak convective effects in a region close to this wall. As the Darcy number rises, the value of the local Nusselt
number increases, depicting an elevated heat transfer rate.

Further, the position of the cylinder is changed closer to the bottomwall, the local Nusselt number increases
and attains a peak value halfway through the bottom wall (C–D) due to dense thermal plumes near this point.
The distribution of local Nusselt number along walls, A-B rises to its midpoint due to upwelling thermal plume
at this point and then falls to the end. The variation on the right (B–C) and left (D–A) walls changes at Da
= 10−2 due to enhanced recirculation through the heated cylinder.
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Further, the Rayleigh number is increased to 106, shown in Fig. 3e, f which presents the variation of the
local Nusselt number along the enclosure wall. The general trend for the distribution of local Nusselt numbers
at different Darcy numbers is not similar to the case of 104. The local Nusselt number value is also larger due
to stronger convective effects. For Ra = 106 and Da = 10−6, when the cylinder is at the centre (see Fig. 7a),
the maximum local Nusselt number is achieved at the enclosure top wall (A–B) due to the presence of thermal
plume pointing towards the midpoint of the top wall. On the right (B–C) and left (D–A) walls, the distribution
curve increases to a point lying before the end of these walls and then falls suddenly to zero at its endpoint.
Further, the curve becomes steep along the bottom wall (C–D) indicating negligible heat transfer to the wall,
which can be certified in Fig. 10. At Darcy number 10−4, the general trend is alike, but the magnitude of the
distribution curve increases.

When the cylinder is shifted upwards, at Da = 10−6, two undulations are found at the top wall (A–B) and
a local maxima is observed at the midpoint. Flat distribution curve for the bottom wall (C–D) is observed,
indicating negligible heat transfer to the bottom wall due to increment in the area between the cylinder and the
bottom wall. For the right (B–C) and left (D–A) walls, the distribution rises until a point close to the wall ends
and then falls suddenly. The magnitude of local distribution increases at Da = 10−4 with a similar trend. With
further increase in Darcy number to 10−2 (Fig. 3f), the shape of the local Nusselt number distribution curve
changes to parabolic and its maximum value is attained at wall A–B. The presence of a thin thermal boundary
layer leads to the peak value at the midpoint of the top wall.

When the cylinder is moved towards the bottom region of the enclosure for Da = 10−6, the local maxima
are seen at the middle of the bottom wall due to dense thermal plumes in the lower section of the cylinder near
the bottom wall. At the top wall of the enclosure (A–B), the distribution curve increases until it attains a peak
value, almost similar to the one obtained for the bottom wall (C–D) due to upwelling plumes. It can be stated
that the rate of heat transfer in the middle of the top and bottom walls are almost equal in this case. The profile
for the right (B–C) and left (D–A) walls is similar in all cases. The general trend is alike when Da = 10−4

with increased magnitude. The maximum value is attained at mid of the top wall (A–B) due to the increased
fluid velocity, and the second local maxima is achieved at mid of the bottom wall. At higher Darcy number
10−2, the maximum value is achieved at right (B–C) and left walls (D–A) as the boundary layer is thinner
near these walls, which was not observed in other cases. The value of the local Nusselt number at the top wall
and bottom wall reduces in comparison with Da = 10−4. As shown in Fig. 7g–i, the core of the inner eddy
shifts downwards and more recirculation occurs. The isotherms in Fig. 10g–i are also parallel near these walls
indicating a lower rate of heat transfer in the top and bottom walls.

The cylinder is alsomoved diagonally along the top-diagonal (see Fig. 5m–o) and bottom-diagonal location
(see Fig. 5p–r). In top-diagonal position, local maxima is obtained at 0.75 L of top (A–B) and right (B–C)
wall. The recirculation zone in the corner enhances heat transmission through these cold walls near the heated
cylinder. As theRayleigh number increases to 106, the number of undulations on the bottom-diagonal cylinder’s
profile increases. Also Da = 10−2, two local maximas are obtained at 0.4 L of top wall and 0.8 L of left wall
indicating the rise of thermal plumes towards top-left corner of enclosure, which lies directly above cylinder.
Similarly, top-diagonal location has its local maxima at 0.8 L of top wall and 0.8 L of left wall as thermal
plumes point towards left wall when convective effects are stronger.

4.2 Mean Nusselt number

The local Nusselt number (NuL) is calculated for each wall of the enclosure. The obtained NuLvalues of each
wall (top, right, bottom, and left walls) are further integrated and then the mean is evaluated using the following
equation:

Numean = 1

L

L∫
0

NuL dL (29)

Here, the value of L is zero at the starting point on the wall and its value increases as we move further towards
another end of the wall. (For example, as mentioned in Fig. 3a, A is the starting point and B is an endpoint of
a top wall.) After solving the governing equations, the heat transfer rate is quantified with the mean Nusselt
number in this study.

Figure 4 depicts the mean Nusselt number under the influence of Rayleigh number, Darcy number, and
cylinder location. Remarkable impacts of Rayleigh number, Darcy number, and cylinder location can be
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Fig. 4 Variation of mean Nusselt number (along enclosure wall for different locations of cylinder) with Darcy number for a Ra
= 104, b Ra = 105, c Ra = 106

noticed. It is well known that an increment in Darcy and Rayleigh numbers increases the rate of heat transfer
for all cylinder locations. ThemeanNusselt number on the enclosure wall varies linearly with these parameters.
The magnitude of Numean increases as the Darcy number rises, owing to a stronger buoyant force that causes
convective effects. The variation is also displayed with different positions of the cylinder inside the cavity.
For all Rayleigh numbers, the value of Numean is largest when the cylinder is placed at the bottom-diagonal
position.

When the cylinder is placed at the bottom-diagonal, Numean is at its greatest since the buoyant effects
increase with the Rayleigh number. As a result, when marginal convection is reached at Ra = 104, the
cylinder can be placed in bottom-diagonal or top-diagonal location for increased heat dissipation. The cylinder
can also be placed towards the enclosure’s bottom or right wall for a faster rate of heat transmission when
natural convection effects are stronger. At a larger Rayleigh number, the rate of heat dissipation increases. At
Ra = 106, the highest value of the mean Nusselt number is observed at the bottom position for an intermediate
Darcy number (10−4). Moreover, the mean Nusselt number for top-diagonal and top position is minimum in
this case.

With the cylinder at bottom-diagonal position, the maximum Numean value is attained. With variation in
Darcy number, the rise in mean Nusselt number value is minimal at Ra = 104. When the Darcy number is
increased from 10−6 to 10−4, the rate of heat dissipation is negligible. However, at Rayleigh number 106, even
at lower permeability levels, more liquid enters the permeable zone with greater velocity. For Ra = 106 and
Da = 10−2, there is a significant increase in the mean Nusselt number at the bottom-diagonal position of the
cylinder.
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4.3 Streamlines and isotherms

The streamline patterns and isothermal contours vary with the Rayleigh number and Darcy number. Air
circulates inside the enclosure around and through the porous cylinder. The influence of the cylinder location
on flow patterns is examined with streamline plots (see Figs. 5, 6 and 7). Thermal fields also significantly
change with the variations in the parameters (Figs. 8, 9 and 10). The influence of the parameters can be
observed through thermal plumes around the cylinder. The increment in the buoyant and permeability levels
changes the density of temperature contours. Mixing heat with fluid depends on gravitational force also.

4.3.1 Effect of Rayleigh number

The buoyancy forces vary with the Rayleigh number. It is a well-known concept that at a lower Ra, the
conduction effects are more dominant. The fluid circulates around the cylinder with a lower velocity. A small
amount of fluid flows inside the porous cylinder due to stronger viscous resistance at Ra = 104 and Da
= 10−4. In the case of Ra = 104, convection effects can be observed for increased buoyant forces. As the
Ra is increased further to 1×106, the velocity of fluid inside the enclosure increases. Fluid recirculates inside
the enclosure after coming in contact with the heated cylinder. The temperature difference between the heated
cylinder and enclosure wall induces heat flow towards the cold wall. The recirculation zone also moves towards
the wall. It is found that at Ra = 106 fluid seeps inside the cylinder even at Da = 10−4 which is not the case
with lower Ra values. An enhanced rate of heat transfer is inferenced for all positions of the cylinder at Da
= 10−2 and Ra = 106 (Figs. 5, 6, 7, 8, 9, 10)

4.3.2 Effect of cylinder location

The porous cylinder placed at different locations inside the enclosure affects the flow and temperature field,
which can be seen through Figs. 5, 6, 7, 8, 9 and 10 for Rayleigh number 104–106, while Da is varied from
10−6 to 10−2. It can be observed that for all Ra and Da, flow and thermal fields are steady. A significant change
in heat transfer is observed when the location of the cylinder is changed. When the cylinder is dislocated along
the vertical centreline (i.e. top, centre and bottom), the hydrothermal characteristics are symmetrical.

Figure 5 depicts the flow field variation caused by a change in the placement of the cylinder inside the
enclosure at Ra= 104. TheDarcy number varies from10−6−10−2. For all positions, the fluid circulates around
the cylinder at Da = 10−6. For Da = 10−6, two symmetric rotating eddies are visible when the cylinder is
put in the centre (Fig. 5a–c). Each eddy has two inner vortices that are symmetric about horizontal and vertical
axes. It’s also worth noting that when Da = 10−4, due to higher inertial resistance, just a little amount of
fluid penetrates the porous cylinder. The inner whirls are no longer symmetric along the horizontal centre line
in this scenario (see Fig. 5b). At Da = 10−2, a single vortex is detected as the permeability increases with
Darcy number, and the symmetry of both centrelines is restored. A large quantity of fluid enters the cylinder
and comes into contact with the hot porous body. The fluid transports heat to the cold wall, accelerating heat
dissipation. Figure 8a–c depicts the fluctuation in the thermal field. The isotherms for Da = 10−6 and 10−4

are practically identical across the cylinder, indicating that the conduction mode is dominating with less heat
transfer. At Da = 10−2, contours get denser near the lower section of the cylinder as permeability increases,
and heat transfer improves.

The single inner vortex moves downwards as the cylinder is pushed towards the top wall. Due to the
increased space, the recirculation zone can be seen below the cylinder (see Fig. 5d–f). The eddy eye shifts
towards the topwall as theDarcy number rises, allowingmore fluid to enter the cylinder. Because the conductive
rate of heat transfer is larger in the region between the top wall and the upper surface of the cylinder, the
isothermal lines are denser. Thinner isotherms are detected below the cylinder as permeability increases,
indicating improved heat transfer. The recirculation zone is in the upper part of the enclosure as the cylinder
moves toward the bottomwall as seen in Fig. 5g–h. The streamline contour undergoes bifurcation in comparison
with the centre and merges into a single inner whirl. With an increase in Darcy number, the eye of the single
inner whirl shifts downwards, and an increased amount of fluid enters the cylinder. The thermal contours are
denser in regions close to the bottom wall and lower portion of a cylinder, showing an increased conductive
rate of heat transfer. At Da = 10−2, thermal plumes point towards the top wall indicating the flow of lighter
warmer fluid upwards due to density variation.

The porous cylinder is further shifted along a diagonal line of enclosure, towards top and bottom as shown
in Fig. 5m–r. In the top-diagonal case, the clockwise recirculation zone is larger in the left region of the
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enclosure (Fig. 5m–o). As the permeability level increases to Da = 10−2, the eye of the innermost eddy shifts
towards the vertical centreline. The small recirculating zone is observed in the top-right corner of the enclosure
indicating accumulation of hotter fluid.

The bottom diagonal position of the cylinder is shown in Figs. 5p–r, 6p–r and 7p–r. The enlarged recircula-
tion zone induces a higher convection rate towards the cold wall. As the Darcy number increases from 10−6to
10−2, the shape of vortices over the cylinder transforms from rectangular to triangular. Small recirculating
zone is also observed in the corner of the enclosure. The isotherms are denser near the corner of enclosure and
coarser on the opposite side of the cylinder.

The symmetry of streamline and thermal fields around the vertical centreline distorts as the cylinder moves
from the centre to the right, top-diagonal and bottom-diagonal location in the enclosure. In Fig. 5j–r, the giant
vortex separates into two asymmetric smaller eddies above and below the cylinder.

The region of clockwise streamlines expands when the cylinder is pushed towards the right wall (Fig.
5j–l). A single compact inner vortex may be seen on the enclosure’s left side, while two smaller asymmetric
eddies form on the upper and lower right corners. At Da = 10−2, triangular-shaped whirls can be spotted near
the enclosure’s right wall. Denser isotherms exist between the cylinder and the right wall. It is reasonable to
assume that greater heat is transported to the right wall.

As the overall heat transfer on the enclosure was analogous in cases of right and left location of cylinders.
In order to avoid the recurrence of results, only the outcomes of the right location case are presented in the
study. As permeability increases to Da = 10−2, the recirculation zone on the right side of the cylinder expands,
and the core of the inner eddy shifts towards the bottom wall. In the enclosure’s left upper and lower portions,
triangular shaped vortices are detected. In the region between the cylinder and the left wall, the isotherms, as
seen in Fig. 5j–l, are denser. As a result, the left wall’s heat dissipation rate is higher, and its Nusselt number
is higher.

In Fig. 5m–r the cylinder is placed in top-diagonal and bottom-diagonal position. The region for recircu-
lation increases as the cylinders are placed at corners of the enclosure. Small recirculating eddies are formed
at corners. In Fig. 6r, the corner eddy diminishes as more amount of fluid enters the cylinder due to increased
convective forces and permeability. The vortex near the bottom wall grows in size and begins to shift slightly
higher.

The smaller inner eddy in the lower enclosure zone diminishes when the Rayleigh number is increased to
105 (Fig. 6). At Da = 10−4, the fluid velocity increases, and the fluid penetrates the cylinder. As more fluid
enters the cylinder, the recirculating region expands, and the core of the inner vortex shifts downwards at Da
= 10−2. At the same value of Da, the vortices shift upwards as the cylinder is moved towards top. The inner
vortex eye slides downwards when the cylinder is pushed towards the bottom wall.

The recirculating whirl in the right section of the enclosure separates into two smaller vortices above and
below the cylinder as the cylinder is moved from the centre to the right (Fig. 6j–l). As the amount of fluid
entering the cylinder increases at Darcy number 10−2, these vortices join a gigantic vortex travelling around
and through the cylinder. In the left region, the focal point of recirculating eddies shifts downward and appears
to lean towards the cylinder. This effect can also be observed in isothermal contours, as the isotherms progress
toward the enclosure’s left wall indicating convective effects on the opposite wall.

The abrupt expansion of the recirculation region whenever the cylinder is moved towards the top-diagonal
and bottom-diagonal causes large-sized vortices. In case of top-diagonal location, the innermost vortex tends to
move towards the cylinder and downwards when Da = 10−2. In Fig. 6o, the number of the small recirculating
eddies near the right wall increases.

The streamlines for the case of the cylinder placed in the bottom-diagonal position are shown in Fig. 6p–r.
When the cylinder is pushed from the centre to the bottom-diagonal, a massive vortex in the enclosure’s left
zone splits into two smaller swirls above and the other lower vortex squeezes in the corner. Triangular-shaped
vortices form as the Darcy number rises to 10−2, and fluid recirculates around and through the cylinder. In the
right section, the eye of recycling vortices turns downward. The thermal contours advance towards the corner
opposite of the cylinder.

Figure 7 shows the streamlines at Ra = 106. The inner vortex elongates and moves upwards when Ra
= 106, showing the flow of hot fluid towards the enclosure walls. Due to considerable convection effects, the
symmetry along the horizontal centre line deteriorates. With larger convective effects, fluid velocity increases,
and isothermal lines become more twisted. The amount of fluid entering the cylinder is less at Ra = 104 than
at Ra = 106 for the same Darcy number (i.e. Da = 10−4). The inner vortex tends to point downwards when
the Darcy number rises from 10−6 to 10−4. Two additional vortices form at the enclosure’s bottom wall.
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Fig. 5 Streamline contours in and around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right,
and (m–o) top-diagonal and (p–r) bottom -diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2 )
at Rayleigh number Ra = 104
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Fig. 6 Streamline contours in and around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right,
and (m–o) top-diagonal and (p–r) bottom-diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2) at
Rayleigh number Ra = 105
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Fig. 7 Streamline contours in and around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right,
and (m–o) top-diagonal and (p–r) bottom-diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2 ) at
Rayleigh number Ra = 106
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The size of these vortices grows as the Darcy number is increased to 10−2. Less dense fluid is travelling
away from gravity, as indicated by the plumes going towards the top wall, as shown in Fig. 10. Thinner
boundary layers are detected as the permeability increases with the Darcy number. The streamlines move
upwards as the cylinder is shifted towards the top. Two more minor eddies are spotted below the cylinder at
Da = 10−2. This is owing to the high velocity of enormous amounts of fluid moving through it. The isotherms
illustrate that when the Darcy number rises, the thermal boundary layer beneath the cylinder grows thinner.
The region between the top wall and the cylinder has more dense isotherms. Small vortices at the bottom wall
are suppressed when the cylinder is pushed lower, and the size of the inner eddy above the cylinder grows.
When the Darcy number is increased, the smaller eddies get smaller. The inner eddy shifts toward the bottom
wall when Da = 10−2. Massive upwelling isothermal contours occur, indicating greater convective effects.
As the Darcy number is increased to 10−2, the thickness of isotherms underneath the cylinder decreases.

In the right region, the core of recirculating eddies leans toward the cylinder. The thermal plumes migrate
toward the enclosure’s right side. The recirculating eddies in the left section of the enclosure divide into two
smaller eddies above and underneath the cylinder as the cylinder is moved from the centre to the right (see
Fig. 7j–l), forming a small vortex close to the bottom wall. These vortices converge to form a huge vortex that
goes around and through the cylinder as the Darcy number is increased. There is an increase in the magnitude
of the vortex near the bottom wall. As seen in Fig. 7j–l, the centre of recirculating eddies in the left region
tends to lean toward the cylinder, and isotherms progress toward the enclosure’s left region.

The cylinder placed in a diagonal position has dense isotherms near the surface, lying at the corner of the
enclosure. On the opposite side, coarse isotherms are observed. In Fig. 7m–r, the creation of bigger vortices
is aided by an increased area in the centre region of the enclosure as the cylinder is displaced diagonally.
The instance of the cylinder in the top-diagonal (Fig. 7m–o) and bottom-diagonal is shown in Fig. 7p–r. A
huge vortex in the left section of the enclosure with a minor vortex inclining towards the cylinder. The smaller
vortices develop at the corner with additional vortices when Da = 10−2 (Fig. 7o). In bottom-diagonal position,
these vortices above the cylinder and at the corner of enclosure, unite to produce a single inner vortex that
passes through and around the cylinder as the Darcy number increases.

In all cylinder positions, a thin boundary layer forms on one side of the cylinder, while the boundary layer
on the other side is thicker, indicating heated fluid travels from the hot cylinder to the cold wall, showing an
overall increase in natural convective effects. As a result, when the cylinder advances towards the bottom wall
and bottom-diagonal, more significant heat transfer is obtained for all Rayleigh numbers.

The shape of isotherms over the cylinder in top-diagonal position changes from circular to pointing towards
the right wall as Darcy number increases. As the Rayleigh number increases from 104 to 106, the thermal
contours spread more towards the enclosure wall indicating heat transfer towards the cooled wall. On the other
hand in case of bottom-diagonal position, the thermal plumes are denser in corners and tilted towards the
top-right corner. This can also be certified by higher local Nusselt numbers along the bottom and left wall (see
Fig. 3a–f). As the isotherms tend to move towards the top-right corner of enclosure, due to stronger thermal
gradient, it enhances the heat transmission towards the opposite walls as well.

5 Conclusions

To compute flowand heat transfer through an isothermally heated porous circular cylinder in a cooled enclosure,
the lattice Boltzmann method is utilised. The Darcy–Forchheimer model is used to model the porous medium.
A force term is added to the BGK collision operator to account for the effects of inertial and viscous forces
on the porous material. The effects of Rayleigh numbers (104 to 106) and Darcy numbers (10−6 to 10−2) are
explored on natural convection heat transfer. The impact of inserting a porous cylinder in the enclosure’s centre,
right, top, bottom, top-diagonal, and bottom-diagonal is studied. Using streamline distributions, isotherms, and
the Nusselt number, the impact of the heated porous inner cylinder location on flow and heat transfer in the
cooled enclosure is explored in depth. The following are the primary findings of the study:

• For all factors tested, the cylinder placement has a considerable impact on the flow and heat transport from
the porous cylinder.

• When the cylinder is displaced vertically, the flow and heat fields settle into a symmetrical configuration
around the enclosure’s vertical centreline. As a result, there is twofold symmetry. The amount of fluid
penetrating within the cylinder increases as the permeability increases. A larger boundary layer on the
upper surface results in a bigger thermal gradient near the cylinder’s bottom surface.
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Fig. 8 Isotherms around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right, and (m–o)
top-diagonal and (p–r) bottom-diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2) at Ra = 104
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Fig. 9 Isotherms around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right, and (m–o)
top-diagonal and (p–r) bottom-diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2) at Ra = 105
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Fig. 10 Isotherms around the porous circular cylinder placed at (a–c) centre, (d–f) top, (g–i) bottom, (j–l) right, and (m–o)
top-diagonal and (p–r) bottom-diagonal in a cooled enclosure for different Darcy numbers (10−6, 10−4 and 10−2) at Ra = 106
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• For all Rayleigh numbers evaluated in this work, we find that the conductive effects are stronger at Ra
= 104. Furthermore, bicellular vortices combine into a unicellular vortex at all points of the cylinder for
Rayleigh numbers 105 and 106. At Rayleigh number 106, a significant amount of fluid travels through the
permeable cylinder because convection effects are more pronounced.

• At all Darcy numbers, minimal amount of fluid penetrates inside the cylinder at Da = 10−6. When the
permeability is increased to 10−4, a small amount of fluid enters the cylinder for a short time. Further
increasing the Darcy number to 10−2 facilitates fluid movement and thereby improves heat dissipation.

• The centre position of the cylinder in the enclosure has a minimum rate of heat transfer in comparison
with other cases for Ra = 104 and 105 as recirculation with bicellular vortices occurs around the cylinder.
When Ra = 104, the mean Nusselt number rises by around 105% when the cylinder is moved from the
centre to the bottom-diagonal at Da = 10−2. The bottom-diagonal location has a higher heat dissipation
rate for all Darcy and Rayleigh numbers.

• For all the cases studied, due to greater convective forces at the Rayleigh number 106, upwelling thermal
plumes are obtained. When Ra = 106, the cylinder on the bottom-diagonal position has a 33% higher
rate of heat transfer at Da = 10−2 than the cylinder in the middle. The heat transfer rate is improved by
slightly shifting the cylinder along the diagonal towards the bottom. Heat transfer is improved when the
cylinder is placed close to the corners of the enclosure near the bottom wall. Hence, the bottom-diagonal
configuration with Rayleigh number 106 and Darcy number 10−2 is best for obtaining a higher rate of heat
dissipation.
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