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External Force Modeling of Snakes using DWT for Texture Object Segmentation
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Snakes, also known as active contours are extensively used in computer vision and image understanding applications.
They are energy minimizing deformable contours that converges at the boundary of an object in an image. Deformation
in contour is caused due to internal and external forces acting on it. Internal force is derived from the contour itself
and external force is invoked from the image. Traditional active contours proposed by Kass et al. only work for the
normal intensity images and fail to perform segmentation task in presence of texture. This limitation comes due to
the limited ability of the external force present in the traditional snake, which uses directly image pixel’s intensity
information for its formulation. Here, we present a new external force modeling technique for snakes, which can work
in presence of texture. It uses texture features for external force modeling, which are derived using discrete wavelet
transform. To demonstrate our model, we use various synthetic and natural texture images.
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1. Introduction

Snakes,1 also known as active contours are exten-

sively used in computer vision and image under-

standing applications. They are energy minimizing

deformable contours that converge at the boundary

of an object in an image. Deformation in contour is

caused because of internal and external forces act-

ing on it. Internal force is derived from the con-

tour itself and external force is invoked from the

image. The internal and external forces are defined

so that the snake will conform to object boundary

or other desired features with in the image. Snakes

are widely used in many applications such as seg-

mentation,2 shape modeling,3 edge detection,1 mo-

tion tracking4 etc. Active contours can be classified

as either parametric active contours1,5 or geometric

active contours6,7 according to their representation

and implementation. In this work, we focus on para-

metric active contours, which synthesize paramet-

ric curves within image domain and allow them to

move towards the desired image features under the

influence of internal and external forces. The inter-

nal force serves to impose a piecewise continuity and

smoothness constraint whereas external force pushes

the snake towards salient image features like edges,

lines and subjective contours. External force in the

traditional snake is defined as the negative of the im-

age gradient. In the presence of such external force,

snake is attracted towards large image gradients i.e.

towards the edges in the image. So if it is applied

to the textured images, it will often get stuck on lo-

cal texel (micro-units or cells of a texture) edges and

converge at non-object boundary.

To overcome this effect, we here present a new

class of external force for textured images, which we

name as texture force. The snake in presence of tex-

ture force runs over the texture image surface and

detects the object boundary of a texture surface, on

a background texture. Texture force does not use di-

rectly the image pixel intensity values for its model-

ing. It considers the texture properties of the image.

2. Background

2.1. Parametric Snake Model

A traditional active contour is defined as a paramet-

ric curve v(s) = [x(s), y(s)], s ∈ [0, 1], which mini-

mizes following energy functional

E =

∫ 1

0

1

2
(α|v

′

(s)|2+β|v
′′

(s)|2)+Eext(v(s))ds (1)

where, α and β are weighting constants to control

the relative importance of the elastic and bending

ability of snake respectively. v
′

(s) and v
′′

(s) are the

first and second order derivatives of v(s) and Eext is

derived from the image so that it takes on its smaller

values at the feature of interest such as edges, object

boundaries etc. For an image I(x, y), where (x, y)

are spatial co-ordinates, typical external energy is
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defined as follows to lead snake towards step edges1

Eext = −|∇I(x, y)|2 (2)

where, ∇ is gradient operator. A snake that mini-

mizes E must satisfy following Euler equation

αv
′′

(s) − βv
′′′′

(s) −∇Eext = 0 (3)

Eq. 3 can also be viewed as force balance equation

Fint + Fext = 0 (4)

where, Fint = αv
′′

(s)−βv
′′′′

(s) and Fext = −∇Eext.

Fint, the internal force, is responsible for stretching

and bending and Fext, the external force, attracts

snake towards the desired features in the image.

2.2. Discrete Wavelet Transform and

Scalogram

The discrete wavelet transform (DWT) analyses a

signal based on its content in different frequency

ranges. Therefore, it is very useful in analyzing repet-

itive patterns such as texture. DWT decomposes a

signal into different bands (approximation and de-

tail) with different resolution in frequency and spa-

tial extent. Let I(x) be the image signal and ψu,s(x)

be a wavelet function at a particular scale, then sig-

nal filtered at point u is obtained by taking the in-

ner product of the two < I(x), ψu,s(x) >. This inner

product is called wavelet coefficient of I(x) at posi-

tion u and scale s.8 Scalogram9 of a signal I(x) is the

variance of this wavelet coefficient:

w(u, s) = E{| < I(x), ψu,s(x) > |2} (5)

The w(u, s) has been approximated by convolv-

ing the square modulus of the filtered outputs with

a Gaussian envelop of a suitable width.9 The w(u, s)

gives the energy accumulated in a band with fre-

quency bandwidth and center frequency inversely

proportional to scale.

(a) (b)

Fig. 1. (a) Synthetic texture image, (b) Magnified view of
the 21× 21 window of texture cropped at point P (marked in
RED color), shown in Fig. 1(a).

3. Texture Feature Extraction

In this section, we explain how the wavelet trans-

form is used to extract texture features necessary for

texture force estimation. It discusses the computa-

tional framework based on multi-channel processing.

We use DWT-based dyadic decomposition of the sig-

nal to obtain texture properties. A simulated texture

image shown in Fig. 1(a) is used to illustrate the

computational framework with the results of inter-

mediate processing.

Modeling of texture features at a point in an im-

age involves two steps: scalogram estimation and tex-

ture feature estimation. To obtain texture features at

a particular point (pixel) in an image, a n × n win-

dow is considered around the concerned point (see

Fig. 1(b)). Intensities of the pixels in this window

are arranged in the form of a vector of length n2

whose elements are taken column wise from the n×n

cropped intensity matrix. This intensity vector (sig-

nal), which basically represents the textural pattern

around the pixel, is subsequently used in the estima-

tion of scalogram.
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Fig. 2. (a) 1-D texture profile of the texture window shown
in Fig. 1(b), (b) Scalogram of the signal shown in Fig. 2(a),
(c) Texture feature image for the image shown in Fig. 1(a).

Scalogram estimation: An input signal, ob-

tained after arranging the pixels of n × n window

as explained above, is used for the scalogram esti-

mation. This signal is decomposed using wavelet fil-

ter. We use orthogonal Daubechies 2-channel (with

dyadic decomposition) wavelet filter. Daubechies fil-

ter with level-L dyadic decomposition, yields wavelet
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coefficients {AL,DL,DL−1 , ..,D1} where, Ai repre-

sents approximation coefficient and Di’s are detail

coefficients. The steps of processing to obtain scalo-

gram from the wavelet coefficients are similar to that

described in.10,11 Fig. 2(b) presents an example of

scalogram obtained for signal shown in Fig. 2(a) us-

ing level-4 DWT decomposition.

Texture feature estimation: Once the scalo-

gram of the texture profile at a particular point

is obtained, a post-processing step is carried out

to eliminate non-significant bands of the scalogram

and only significant bands are used for the fur-

ther processing. This is done since only significant

bands contain major texture features information.

Removal of non-significant bands helps in remov-

ing the redundant information and making the com-

putation fast. Let wavelet decomposition is done

up to level-L and it gives following wavelet bands

B = {AL, DL, DL−1, .., D1}. Let Bi is a ith wavelet

band in set B. We use following algorithm to deter-

mine significant and non-significant bands.

for each Bi do

if variance for band Bi ≤ threshold

Bi is non-significant band

else

Bi is significant band

end-if

end-for

where threshold is decided empirically. Variance

of bandBi is defined as var(Bi) = E[(Bi−µi)
2] where

µi is the mean of all wavelet coefficients belonging to

band Bi. Once the estimation of scalogram and its

significant bands is over, significant bands are used

for texture feature estimation. Texture features are

estimated from the “energy measure” of the wavelet

coefficients of the significant bands. This texture fea-

ture is similar to the “texture energy measure” first

proposed by Laws.12

Let for pixel k, Dk is the set of all significant

bands and w is a wavelet coefficient in a band. Then

the energy measure of pixel k is calculated to be the

averaged l1-norm as

Ek =
1

n

{

∑

X∈Dk

∑

w∈X

w

}

(6)

where, n is the sum of cardinalities of all the mem-

bers of Dk. These energy measures for all pixels in

an image constitute “texture feature image” which

is further used in texture force modeling. Fig. 2(c)

shows a texture feature image for the texture image

shown in Fig. 1(a). Pixels belonging to the same tex-

ture region exhibit same energy level.

4. Modeling of Texture Force

This analysis is based on the gradient present in the

texture feature image. Let for a given texture image

I(x, y), F (x, y) be the texture feature image obtained

as explained in previous section. The external energy

of the snake based on the gradient present in the tex-

ture feature image can be defined as follows (similar

to Eq. 2)

Etex
ext = −|∇F (x, y)|2 (7)

As done in Eq. 4, texture force (external force), which

causes the change in this energy (i.e. Etex
ext), can be

defined as follows

F tex
ext = −∇Etex

ext (8)

To find the object boundary, active contour deforms

so it can be represented as the time varying curve

v(s, t) = [x(s, t),y(s, t)] where s ∈ [0, 1] is arc-length

and t ∈ R+ is time. Dynamics of the contour in pres-

ence of texture force can be governed by following

equation

γvt = Fint + Ftex
ext (9)

where, vt is the partial derivative of v w.r.t. to t,

−γvt is the damping force and γ being an arbitrary

non-negative constant. Fint and Ftex
ext are internal

and texture forces respectively. The contour comes

to rest when the net effect of the damping, internal,

and texture force reaches to zero, which eventually

happens when deforming contour reaches the tex-

ture object boundary. The texture force developed

here pushes active contours towards texture object

boundary.

5. Experimental Results

To get the boundary of a particular object using ac-

tive contours in presence of texture, a contour is ini-

tialized near the desired object. Contour is then al-

lowed to deform towards the object boundary until it
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latches around the object. In case of textured images,

object boundary is identified as the point where tex-

ture property changes i.e. where two texture regions

meet. In texture surface, snake in presence of tex-

ture force stops moving as it gets different texture

region. For a snake to stop at the texture bound-

ary, net effect of the damping, internal and external

forces should be zero for all snake points at the ob-

ject boundary. To demonstrate the performance of

the snake in the presence of texture force, various

kinds of synthetic and natural textures are used. We

have used Daubechies 8-tap 2-channel filter for DWT

decomposition.

The first example is of a texture image (Fig. 3)

composed of two textures taken from a widely used

Brodatz photographic album.13 Contour is initialized

around the central texture and is allowed to shrink

in presence of texture force. Snake took 14 iterations

to converge at the central texture boundary. Texture

features at snake points are estimated by taking a

15 × 15 window at each point. DWT decomposition

was done up to level-4. Texture feature image for this

test image in shown in Fig. 4(a). The resulting seg-

mentation is shown in Fig. 4(b), where the identified

texture object boundary is shown in dark black color.

Fig. 3. Texture image composed of two Brodatz textures.13

(a) (b)

Fig. 4. (a) Texture feature image for the texture image shown
in Fig. 3, (b) Final Segmentation result of Fig. 3. Dark black
contour shows the estimated boundary of the central texture.

We present another segmentation result for an

image (Fig. 5) composed of two Brodatz textures.

Contour convergence to the central texture bound-

ary, in presence of texture force, took 11 iterations.
Texture features at contour points are estimated by

taking a 13 × 13 window. DWT decomposition was

done up to level-4. Texture feature image for this

test image is shown in Fig. 6(a). The resulting seg-

mentation is shown in Fig. 6(b), where the identified

texture object boundary is shown in dark black color.

Fig. 5. Texture image composed of two Brodatz textures.13

(a) (b)

Fig. 6. (a) Texture feature image for the texture image shown
in Fig. 5, (b) Final Segmentation result of Fig. 5. Dark black
contour shows the estimated boundary of the central texture.

Fig. 7. Natural real life test image of zebra.

(a) (b)

Fig. 8. (a) Texture feature image of zebra (shown in Fig. 7),
(b) Final Segmentation result for zebra. Dark black contour
shows the estimated boundary of zebra

Fig. 7 shows a natural real life test image of ze-

bra. Contour convergence to the boundary of zebra,
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in presence of texture force, took 15 iterations. Tex-

ture features at contour points are estimated by tak-

ing a 11×11 window. DWT decomposition was done

up to level-4. Texture feature image of zebra is shown

in Fig. 8(a). The resulting segmentation is shown in

Fig. 8(b), where the identified boundary of the zebra

is shown in dark black color.

(a) (b)

Fig. 9. Comparison of segmentation results of zebra image,
(a) Segmentation result obtained using proposed technique,
(b) Segmentation result obtained in.14 Dark black contour
shows the estimated boundary of zebra in both the cases.

6. Conclusion

In this paper, we have introduced a new external

force for snakes, which we call as texture force. Snake,

in presence of texture force, can be used for the tex-

ture object segmentation. To model texture force,

first texture features are estimated using wavelet de-

composition which are further used in texture force

modeling. Texture force is subsequently used in para-

metric snakes for texture object segmentation. Main

novelty of this study is in the representation of the

texture features and the modeling of texture force

based on them. We validate our model with a few

synthetic and natural texture images. Results ob-

tained using proposed technique are quite satisfac-

tory. In Fig. 9, we compare our segmentation result

of zebra with the segmentation result obtained by

Sagiv et al. in14 for the same. The result obtained by

proposed technique (Fig. 9(a)) is comparable with

the result obtained in14 (Fig. 9(b)). Since proposed

segmentation technique uses parametric snake, it is

computationally less expensive compare to the tech-

nique presented in14 which uses geodesic active con-

tour.
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