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Human recognition with biometrics is a rapidly emerging area of computer vision. Compared to other well-known biometric
features such as the face, ingerprint, iris, and palmprint, the ear has recently received considerable research attention. The ear
recognition system accepts 2D or 3D images as input. Since pose, illumination, and scale all afect 2D ear images, it is evident
that they all impact recognition performance; therefore, 3D ear images are employed to address these issues. The geometric
shapes of 3D ears are utilized as rich features to improve recognition accuracy. We present recent advances in several areas
relevant to 3D ear recognition and provide directions for future research. To the best of our knowledge, no comprehensive
review has been conducted on using 3D ear images in human recognition. This review focuses on three primary categories
of 3D ear recognition techniques: (1) registration-based recognition, (2) local and global feature-based recognition, and (3)
a combination of (1) and (2). Based on the above categorization and publicly available 3D ear datasets, this article reviews
existing 3D ear recognition techniques.
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salient region detections; Object recognition.

Additional KeyWords and Phrases: Biometrics, 2D/3D Ear, Veriication/Identiication, Local/Global Features, ICP, Age invariant,
Inheritance, Data quality

1 Introduction

Recognition is an essential task in the computerized world, and the traditional recognition systems which depend
on tokens and passwords are unreliable and extremely harmful. The token may be lost, stolen, or exchanged,
and lengthy passwords are hard to remember; hence, recognition systems based on individual biometrics can
overcome the limitations of traditional systems [6, 7, 13, 14, 24, 45, 46, 70, 85, 87, 88, 99, 112, 145, 169, 189].
łThere’s real power in using the appearance of an ear for computer recognition, compared to facial recognition.
It’s roughly equivalent, if not better", said Professor Kevin Bowyer of the University of Notre Dame [165].
Among the many biometrics that has emerged in recent years, the ear has emerged as one of the most reliable
[3, 15, 20, 22, 47, 60, 67, 71, 75, 86, 131, 138]. Unlike the face, the ear does not change its shape with diferent
expressions and is not afected by cosmetics and wrinkles due to aging. Further, the ear size is greater than the
ingerprint and iris and smaller than the face; hence, it can be easily acquired and processed. Ear biometrics is
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Fig. 1. Diferent representations of 3D ear images. (a) Depth image, (b) point cloud, (c) polygon mesh, and (d) voxel.

non-intrusive, and the data acquisition requires less user cooperation. Recently, researchers developed many
new biometric traits for human identiication, including body odor, skull, back posterior posture, ingernails,
toe print, and nose pores, with the ear being one of the most promising1. Additionally, independent embedded
systems have been successfully prototyped to show the ear’s reliability in real-time applications [90]. Besides
the above advantages, Ianneralli’s experiment [76] demonstrates that twins and triplets have distinct ears. The
empirical evidence presented in [120] validates Ianneralli’s assertion and demonstrates the potential role of
the ear’s performance in privacy preservation [33], kinship veriication [44], identifying twins [120], infant
recognition [115], and gender classiication [100, 121, 168] where other biometrics such as face recognition fail
[129]. Besides, we can also use ear biometrics as a supplement/multimodal with other biometrics to enhance
security and recognition performance [42, 114]. For instance, ear can be combined with other biometric traits
such as palm [54, 73, 108], palm and lips [31], ingerprint [66], face [77, 109, 110, 141, 142, 167, 168, 177], gait
[122], inger knuckle [135], ECG and iris [137], ingerprint and iris [115], gait and face [94], palm vein [160], 3D
face and inger [166], and 3D face [21, 80, 84, 156, 157]. A 3D ear image is an abstract representation of an ear
and can be represented as depth, point cloud, polygon mesh, or voxel. Figure 1 shows the example of each of
these ear representations. In literature, existing methods have used these representations to extract features and
perform 3D ear recognition. However, each representation has its limits. In surface modeling methods, like mesh,
the topological information (connectivity between the points) can be obtained, while in the point cloud, the data
is unstructured, and the topological information is absent. The voxel image is a volumetric representation of each
point where the change in volume afects the resolution of the 3D image.

In 3D ear recognition, signiicant works have been carried out using point cloud and depth images compared to
the other two representations. Point clouds are widely used in ear matching since most ear recognition techniques
rely on registration to obtain matching scores [26, 59, 63, 83, 130, 194]. Further, the depth image is a 2D image
that provides the distance information of the object from a viewpoint. It is also widely used in 3D ear recognition,
as 2D operations such as convolution can efectively extract features such as curvatures and edges to match ear
pairs [185].

The ear recognition framework outlined in Figure 2 involves the following steps.

• Enrollment: This step enrolls a user in the recognition system. A camera or 3D scanner is used to capture
the user’s ear, and a template is constructed using the features derived from the ear image. The obtained
user template is enrolled (stored) in the database to facilitate the recognition of the user in the future.

1https://www.bbc.com/future/article/20170109-the-seven-ways-you-are-totally-unique

ACM Comput. Surv.



A Survey of 3D Ear Recognition Techniques • 3

3D Gallery 
 Profile Face Image

Extraction of 3D
Gallery Ear Preprocessing Template Creation

Database 
(Stored templates of

gallery images)

3D Probe 
Profile Face Image

Extraction of 3D
Probe Ear Preprocessing Template Creation Decision Match

No Match

Enrollment

Verification / Identification

Fig. 2. Outline of enrollment and verification in 3D ear recognition.

• Veriication: To create a user template, a token and biometric data are combined. Further, the token helps
locate a unique template in the database compared to the actual user template to determine if the user is
genuine. This procedure uses one-to-one matching.

• Identiication: A user template is created with only biometric data and compared to all other templates in
the database using one-to-many comparisons to determine the best match.

Overall, ear recognition is an intriguing area of study, and Figure 3 illustrates the impact of the ear on human
recognition since 2005. We utilized dblp: computer science bibliography2, Google Scholar3, Scopus4, and ACM
digital library5 to compile the list of published articles in the domain of 3D ear recognition. It is noted that there
has been a slight decline in the number of publications in recent years, and one major reason for this is the scarcity
of publicly available large databases of 3D ear images. Currently, only two major 3D ear databases (UND-J2 and
IIT Indore) with a limited number of subjects are available for evaluation. However, since the ield of 3D ear
biometrics is promising and ofers many good features (such as invariance to aging, expression, etc.) compared
to the face, we anticipate a rise in the number of publications with large databases in the near future. Also, a
competition is held worldwide to inspire researchers in the ield of ear biometrics6 [53], which will also lead to
fruitful publications in the future. Recently deep learning-based approaches dominate the classical approaches;
therefore, we included, as shown in Figure 4, separate publication statistics to show the impact of deep learning
in ear recognition.

2https://dblp.org/
3https://scholar.google.com/
4https://www.scopus.com/
5https://dl.acm.org/
6http://awe.fri.uni-lj.si/competitions.html
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Fig. 3. Published articles since 2005 on 3D Ear. (a) The number of articles published per year, (b) categorizing published

articles based on applications.
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Fig. 4. Since 2017, the impact of deep learning on ear biometrics (2D and 3D). (a) The number of articles published per year,

and (b) the role of deep learning in diferent fields.

1.1 Diferences from other related surveys

To the best of our knowledge, there has not been a systematic literature review on 3D ear recognition. A few
existing ear recognition surveys are listed in Table 1. It contains long and short surveys, with the majority
focusing on 2D ear recognition techniques and only a few on 3D ear recognition techniques. These surveys have
been divided into three categories to highlight how they difered from ours.

(1) The irst group [2, 51, 92, 128, 162] discusses ear detection, segmentation, and recognition techniques based
on local and global features computed using classical and learning-based approaches. In [51], ear recognition
in constraint and unconstrained environments, toolboxes for 2D ear recognition, as well as a thorough
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Table 1. A summary of related survey papers in ear biometrics.

Year Authors Survey on Domain Category Remarks

2012 Plug et al. [128] Ear 2D Long survey on 2D ear
2013 Abaza et al. [2] Ear 2D/3D Long survey focuses more on 2D ear
2017 Žiga et al. [51] Ear 2D Long survey on 2D ear
2021 Wang et al. [162] Ear 2D Long survey on 2D ear

2021 Kamboj et al. [92] Ear 2D

Group - I

Long survey on 2D ear and has a detailed
review of deep learning techniques.

2008 Islam et al. [81] Ear/Face 2D/3D Short survey on face & ear
2012 Islam et al. [82] Ear/Face 2D/3D Long survey on 3D face & ear
2018 Rajalakshmi et al. [135] Ear/Finger knuckle 2D Short survey on 2D ear & inger knuckle
2020 Yichao et al. [109] Ear/Face 2D

Group - II

Long survey on 2D face & ear
2007 Choras et al. [32] Ear 2D Short survey on 2D ear
2009 Selvam and Rao [144] Ear 2D Short survey on 2D ear
2011 Li et al. [178] Ear 2D Short survey on 2D ear
2014 Singh et al. [147] Ear 2D/3D Short survey focuses more on 2D ear
2020 Pallavi et al. [150] Ear 2D

Group - III

Short survey on 2D ear

description of evaluation protocols are given, and in [92], a dedicated survey on deep learning-based
techniques is discussed. However, each survey includes only a brief discussion on 3D ear recognition.

(2) The second group discusses multimodal recognition using ear and other biometric traits. A review of 3D
face and ear recognition techniques is presented in [81, 82]; however, it does not include the most recent
3D ear recognition techniques. Similarly, multimodal 2D recognition using ear, face, and inger knuckle
and the impact of noise and occlusion is discussed in [109, 135]. Overall, this group lacks a focus on 3D ear
recognition techniques, and their review scope is slightly broader than ours.

(3) The third group, short surveys, also focused more on 2D than the 3D ear [32, 144, 147, 150, 178].

1.2 Motivation

Ear recognition is a rapidly growing ield in biometrics, where the 3D ear has signiicant performance advantages
over 2D. We are especially interested in the 3D ear for the following reasons.

(1) The geometric shape of 3D ear models overcomes the challenges, viewpoint, and illumination mentioned
above.

(2) The richness of geometrical properties in 3D has high discriminating features and is superior to its 2D
counterpart.

(3) 3D ear can be a better choice to analyze the open issues such as the age-invariant nature of the ear, symmetry
property of the ear, and the inheritance nature of the ear.

1.3 Contributions

This survey is the irst comprehensive and systematic review of 3D ear recognition techniques for the biometric
research community. We hope this survey will help the research community understand major challenges and
drawbacks in the state-of-the-art methods and future research opportunities. In summary, the following are the
main contributions:

(1) The available datasets and data preprocessing are discussed in detail.
(2) A uniied way of categorizing recognition techniques consolidates 3D ear recognition techniques as

registration-based and feature-based. The beneits and drawbacks of each method are discussed in depth.

ACM Comput. Surv.
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Fig. 5. Categories of approaches in 3D ear-based human recognition.

(3) Visual results demonstrating qualitative analysis of a few 3D ear keypoint detection and recognition
methods are presented.

(4) For completeness, a few techniques on the 2D ear have been presented in the context of co-registered 2D
and 3D ears.

(5) The current issues in 3D ear recognition approaches and the open problems as future research directions
are discussed.

1.4 Structure of this survey

The following is the structure of this survey. Section 2 gives a hierarchical overview of recognition techniques,
and Section 3 discusses data acquisition techniques which detail the methods used in 3D ear data collection.
Section 4 discusses data preprocessing, which includes ear cropping from 3D proile images, Section 5 provides a
full summary of 3D ear datasets, and Section 6 details the metrics used to evaluate recognition techniques. Section
7 discusses 3D keypoint detection techniques, and Section 8 provides a detailed survey of 3D ear recognition
techniques. A separate Section 9 is included on learning-based techniques in 3D ear recognition to underline the
importance of deep learning. Finally, the article addresses the potential challenges and opportunities in 3D ear
recognition in Section 10, followed by conclusions in Section 11.

2 Taxonomy

The taxonomy of diferent 3D ear recognition techniques is presented in Figure 5 hierarchically. It encompasses
recognition strategies based on registration, feature descriptor, and deep learning. We irst discuss the registration-
based strategy in detail and explain how a registration algorithm determines the match between an ear pair.
Further, we present existing techniques for boosting the convergence of registration algorithms. Following

ACM Comput. Surv.
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(a) (b)

Fig. 6. 3D scanners. (a) Minolta vivid 9107, and (b) Artec8.

that, we describe feature-based techniques and present how the similarity of two ear images is computed
using the extracted features. Additionally, we discuss how feature-based techniques are more eicient than
registration-based techniques. Finally, we discuss deep learning-based techniques for 3D ear recognition.

3 Data acquisition

To capture the shape of the ear in 3D, commonly used are non-contact 3D laser scanners. The datasets [174], [26]
in the literature used Minolta Vivid7 910 scanners to collect 3D ears, while a few others used Artec scanners8

[62]. Figure 6 depicts both scanners. Vivid 910 scanners are expensive; however, they are more precise than many
non-contact digitizers. On the other hand, Artec is less costly than Minolta and slightly less accurate. However,
the Artec scanner is convenient and could be a good choice for capturing small objects such as ears in portability.
In the Minolta scanner, the lower window emits laser light on the subject, while the upper window receives
the returning light from the subject. A minor drawback of laser-based scanners is that users may be hesitant
to participate in data collection due to exposure to laser light. 3D commercial scanners are expensive, so it is
challenging to utilize in real-time. Few techniques have generated 3D ear data from 2D ear data using a 3D
reconstruction approach to address the issue. However, these techniques generate volumetric images, and the
image resolution is determined by the size of each voxel, which impacts recognition accuracy. It also necessitates
a series of 2D ear images and calibration to obtain accurate 3D ear data [12]. As a result, researchers in [183]
built a custom scanner that collects data by laser triangulation. The data acquisition process is similar to that of
Minolta, generating 2D and 3D data. Figure 7 illustrates the custom scanner in which laser light is emitted onto a
2D ear, caught by a CCD camera and then sent to a computer to build a 3D ear point cloud. However, the method
for capturing ears in 3D varies depending on the dataset. In most situations, data collection is accomplished by
placing a cap over the subject’s head, as the sensor cannot sense the hair surfaces. A few 3D acquisition methods
for obtaining various biometric traits are outlined in [182], and more focus on ear data acquisition is detailed in
[40, 105, 106, 119].

7https://www.konicaminolta.com/
8https://www.artec3d.com/
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Fig. 7. 3D custom scanner and the generated 3D ear data. (a) Custom scanner, (b) laser light projected on the ear, and (c)

generated 3D ear point cloud [183].

4 Data preprocessing

Data preprocessing includes noise removal and hole illing that occurs during data collection, as well as cropping
the ear from the face proile image.

4.1 Noise and holes removal

Spikes and holes are the two common errors in the 3D ear data due to subjects’ oily skin and sensor, where holes
are more frequent than spikes [26]. At the time of data acquisition, the inner part of the ear, which is not visible
to the sensor, contributes to the holes. Vertex-based anisotropic difusion [186] is used to remove spikes [59, 64]
as it preserves geometric information while smoothing. Mean, or median ilters are commonly used to ill the
holes, and a few other works use interpolation to ill holes [26, 171].

4.2 Normalization

Another step in preprocessing is to pay attention to the size of the ear sample. Though the size is independent of
the subject’s distance from the camera, at the time of data acquisition, a shift in the distance between the subject
and the camera causes the irregular distribution of points in the x and y planes. Thus, the distance between x

and y must be normalized to obtain a standard ear sample.

4.3 3D ear detection

Recognition performance in an ear biometrics system is highly dependent on the performance of the ear detection
module. The trade-of between system complexity and false-positive detection is a crucial factor, as system
complexity is proportional to the detection of zero false positives.

4.3.1 Classical approaches Most of the 3D ear dataset available is in the form of proile face images, and it has
to be preprocessed to crop the ear for further study. However, cropping 3D ears from 3D proile face images is
challenging. Many datasets employ manual cropping for better data quality, as accurate detection and extraction
are critical for subsequent recognition. Traditionally, 3D ear detection systems relied heavily on 2D ear images
to detect ears from 3D proile face images. We discuss a simple method to crop the ear from 3D proile images,
despite mentioning detection and segmentation as open issues in Section 10. Since object detection algorithms
in 2D domains are highly eicient at detecting objects in a scene, we can train any detector to detect an ear
from a 2D proile face image. Given that each 3D model has its co-registered 2D image, a trained detector can be

ACM Comput. Surv.
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Fig. 8. Cropping of ear from a 3D profile face using a 2D co-registered image. (a) 2D profile face image, (b) co-registered 3D

profile face image, (c) 2D ear detection (highlighted in red bounding box), (d) mapping of detected bounding box coordinates

from (c) onto 3D ear, and (e) cropped 3D ear [174].

applied to the co-registered 2D images to detect the ear. Consequently, we can map the 2D coordinates of the
detected ear to 3D to crop the ear from 3D proile face images [26, 79]. This method is valid for datasets with
co-registered images. It is worth noting that points in 3D images that are not mapped to 2D images should be
removed carefully before proceeding. The other method is orientation-dependent, where the distance between
the nose and ear pit is utilized to crop the ear. We can empirically determine the nose and ear pit distance using a
few training proile face images; however, the orientation of all proile images is not assured. An outline of ear
detection in 3D using 2D images is demonstrated in Figure 8, where Figures 8(a & b) show the co-registered 2D
and 3D proile face image, and Figure 8(c) shows the bounding box ear detection in 2D. The detected coordinates
are mapped to the 3D proile image as shown in Figure 8(d) to crop 3D ear as demonstrated in Figure 8(e). Though
the majority of techniques use co-registered images in ear detection, a technique is available using a classical
approach that can be applied directly to the 3D proile image to detect the 3D ear [102].

4.3.2 Deep learning based approaches These are more promising than classical ones in detecting ears in a complex
unconstrained environment [97]; therefore, ear detection in 2D proile images can be performed using any deep
learning-based techniques [36, 52, 93]. Similarly, a few techniques in the literature can be applied directly on 3D
proile images to localize ears [116, 117, 194]. EpNet [116] is one of the recent techniques in 3D ear detection that
uses PointNet [132] as the backbone. Its architecture is shown in Figure 9, where the network accepts point cloud
data as input, computes local features at each point and then computes a global feature for the entire 3D ear using
a max-pooling operation. Finally, a multi-layer perceptron (MLP) network combines the local and global features
to generate output vectors. Further, this technique has employed a statistical model [126] to generate synthetic

ACM Comput. Surv.
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Fig. 9. The architecture of EpNet for 3D ear detection in point cloud data. The T-net and MLP in the architecture stand for

transformation network and multi-layer perceptron, respectively [116].

Fig. 10. Visual results of ear detection for EpNet on the UND-J2 dataset where the points highlighted in black represent the

ear region [116].

training data as there was a lack of data for handling the data annotation. This technique makes it possible to use
the model parameters to determine the ear component automatically. The data is normalized before training
so that all coordinate values fall between 0 and 1. After training the technique on synthetic data, it has been
evaluated on the UND-J2 dataset to check its performance on a real dataset, and Figure 10 illustrates a few ear
detection results for the technique. The other technique presented in [117] is similar to [116], where PointNet++
[133] is used as the backbone architecture. Similarly in [194], PointNet++ [133] is used to segment the ear.
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Table 2. Summary of 3D ear datasets.

No.
Dataset

Name
Data Format

Acquisition

Device
# Subjects # Images

1 UND-J2 [26]
Range Images
(480 x 640),
Co-registered 2D

Minolta
Vivid 910

415 1800

2 IIT Indore [62]
Point cloud,
Mesh

Artec-Eva

Phase-1 - 188

Phase-2 - 176

Phase-3 - 188

1509

1380

1478

3 UCR [27]
Range Images
(200 x 200),
Co-registered 2D

Minolta
Vivid 300

155 902

4 Ear Parotic [107]
Range Images
(140 x 200)

Custom
Device

250 2000

5 Datasets

This section discusses the various 3D ear datasets that are freely available or require a license agreement. The
available 3D ear datasets are summarized in Table 2. A few 3D ear datasets include 2D co-registered images;
however, this is not true for all datasets. Moreover, most datasets include proile face images, and 3D ears must
be cropped from them. In a few other datasets, West Virginia University (WVU) and University of Miami (UM)
generated 3D ear images from video using shape from shading and structure from motion approaches with 48
and 13 subjects. We have not included separate sections for these datasets due to the lack of available information
[23].

5.1 UND dataset

The University of Notre Dame, Collection-J2 (UND-J2) dataset9 is the largest publicly accessible ear dataset. It
also provides separate UND-E, UND-F, and UND-G ear datasets, the subsets of the UND-J2 dataset. UND-E has
114 subjects with 464 samples, UND-F has 302 subjects with 942 samples, UND-G has 235 subjects with 738
samples, and UND-J2 has 415 subjects with 1800 samples. All subsets have co-registered 2D ear images except
UND-E, and a few samples of the 3D ear from the UND-J2 dataset are shown in Figure 11. The images in the
dataset were collected by Minolta Vivid 910 3D scanner in two sessions, maintaining a time gap of 17 weeks
between the two sessions during data collection. The scanner captures data in 0.3 seconds in ine resolution with
a precision of ±0.008�� and accuracy of ±0.10��. It is observed that the images in the dataset are afected by
pose variations, scaling, and occlusion due to earrings and hair. The dataset is available as proile face images,
which would require additional cropping to obtain ear. However, the availability of co-registered 2D and 3D
images in the dataset enables us to simplify the cropping process to a certain degree.

9https://cvrl.nd.edu/projects/data/
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Fig. 11. A few 3D ear samples from the UND-J2 dataset [174].

Side Profile Scan

Full Profile Scan

Subject

Fig. 12. Setup of full and side profile scanning [40].

5.2 IIT Indore dataset

Indian Institute of Technology Indore10(IIT Indore) 3D ear dataset is our in-house dataset collected using Artec-
Eva® scanner [62]. The scanner provides high resolution and easy handling without using any additional
equipment. It captures data with a resolution of ±0.5�� and accuracy of ±0.10��. The scans are acquired using
a wig cap to avoid occlusion and unwanted relection from the subject’s hair. We also ensure that there is no
other relective surface in the vicinity of the subject while capturing the data. The scanner encounters diiculties
owing to the optical properties of the eyes and teeth and captures eyes and teeth (if visible) geometrically inward,
resulting in holes. Figure 12 shows the side proile and full proile scan setup. The side proile scan contains right
and left ear images in 3D, and the complete proile scan includes face, right, and left ear images. Samples of a few
processed, scanned images are shown in Figure 13.

10http://iiti.ac.in/people/s̃urya/research/IIT_Indore_Ear_Database/index.html
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Fig. 13. A few 3D ear samples from the IIT Indore dataset [62].

The ear images have been scanned in normal mode (geometric + texture), and the dataset currently consists
of scans in two formats, .ply and .asc. Scans can be visualized, processed, and transformed using the software
included with the Artec Eva 3D scanner and open-source software such as MeshLab11 [35] and CloudCompare12

[65]. The ear images have been sequentially numbered (from right to left ear) for each subject with an integer
identiication number, e.g., 1000xx, where 1000 represents the subject number, and xx represents the sample
number. The IIT Indore dataset is collected in three phases, approximately one year between two subsequent
phases. The data collected in Phase-1, phase-2, and phase-3 has 188 subjects, 176 subjects, and 188 subjects,
respectively, with at least three 2D & three 3D ear samples; however, 2D ear images are not co-registered. Among
these subjects, 110 subjects are common in all three phases, and the dataset is available in both raw and cropped
formats.

5.3 UCR dataset

The University of California Riverside (UCR) dataset13 has been acquired using the Minolta Vivid 300 3D scanner.
The scanner provides range images and co-registered 2D color images. The dataset consists of 155 subjects with
902 samples. The samples from each subject are collected on the same day in three diferent poses, viz. left, right,
and front. The dataset contains images with pose variations and occlusions due to hair and earrings.

5.4 Ear parotic face angle

This dataset contains 2000 ear samples from 250 subjects ranging in age from 20 to 60 [107]. The data was
collected using a custom laser scanner with a ±0.5�� accuracy, and the designed scanner was much cheaper
than available scanners in the market. The ear data was collected in two sessions at a time gap of one month.
Before data collection, subjects were asked to remove ornaments, to acquire clean data free of occlusions.

11https://www.meshlab.net/
12https://www.danielgm.net/cc
13https://vislab.ucr.edu/RESEARCH/sample_research/Biometrics/ear.php
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6 Evaluation Metrics

The following is a collection of assessment methods to evaluate the performance of an ear recognition technique.

• False Rejection Rate (FRR): The percentage of times a technique incorrectly classiies a genuine user as
an imposter.

• False Acceptance Rate (FAR): The percentage of times an imposter is identiied as a genuine user.
• Equal Error Rate (EER): It is the value when FRR and FAR both have the same value.
• Genuine Acceptance Rate (GAR): It represents the proportion of times a technique correctly recognizes
an authentic user.

• Receiver Operating Characteristics (ROC) Curve: A probability curve shows how much a biometric
system is capable of distinguishing the subjects. It plots FAR vs. GAR values where GAR is deined as
(100 − ���)%.

• Decidability Index (DI): It measures the separation of the mean of intra-class (similarity scores) and
inter-class (dissimilarity scores) probability distributions.

• Rank-k: It is used to evaluate a biometric system’s performance and indicates the frequency with which a
correct sample occurs within the top k matches.

Veriication accuracy of a recognition technique is used to measure its veriication performance and is deined
as �������� = (100 − ���+���

2 )%. The optimal combination of FAR and FRR for any recognition technique
provides the highest veriication accuracy.

7 Feature keypoint extraction

Due to the large number of points on a 3D ear, it is diicult to consider all points during recognition. For example,
using a complete point cloud of a 3D ear in registration-based techniques may increase matching time due to
slow convergence. To avoid this, in many techniques, keypoints are used to eiciently represent the 3D ear
[43, 179]. In many features-based and registration-based ear recognition techniques [27, 59, 130, 190], detecting
these keypoints is the initial step in matching. This section presents prominent techniques for detecting the
keypoints in a 3D ear, viz., local surface variation (LSV) based, shape index (SI) based, and curvedness-based
techniques. This section reproduces and summarizes the visual outcomes of a few techniques to provide readers
with a qualitative overview. Table 3 summarizes the techniques used to detect keypoints in a 3D ear.

7.1 Techniques based on curvature

The shape index (SI) is a curvature-based measure for detecting keypoints [28]. SI at a point � is deined as

�� (�) =
1

2
−

1

�
���−1

�1 (�) + �2 (�)

�1 (�) − �2 (�)
(1)

where �1 and �2 are the maximum and minimum principal curvatures, and �1 > �2 ∀� . Formally, �1 and �2 are
given as follows.

�1 = � (�) +
︁

� 2 (�) − � (�)

�2 = � (�) −
︁

� 2 (�) − � (�)
(2)

where � (�) and � (�) are the mean and Gaussian curvatures at the point � . For a given ear image, SI is computed
for a local region within a window of size� ×�. If the window’s center point’s SI is an extremum compared to
all its neighbours, it is classiied as a keypoint. The value of SI is also helpful in categorizing the nature of the
shapes. A range of SI values and corresponding shape categories are listed in Table 4. The SI values computed
at each vertex of a 3D ear model using Equation 1 are illustrated in Figure 14. The color scheme indicates the
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Table 3. A summary of 3D ear feature keypoint detection techniques.

No. Reference
Approach based

on
Data Type

1 Chen et al. [28] Curvature Range Image

2 Chen and Bhanu [26]
Curvature,

Edge detection
Range Image

3 Chen and Bhanu [27] Curvature Range Image
4 Zeng et al. [179] Curvature point cloud
5 Zhou et al. [190] LSV Range Image
6 Islam et al. [83] LSV Range Image
7 Islam et al. [84] LSV Range Image
8 Sun et al. [152] Curvature Range Image
9 Prakash and Gupta [130] SURF Range Image
10 Maity et al. [111] Curvature Range Image
11 Zhang et al. [188] LSV Range Image
12 Ganapathi et al. [59] LSV Point cloud
13 Ganapathi et al. [64] Curvilinear Point cloud
14 Ganapathi et al. [61] Gauss map Point cloud
15 Zhu et al. [193] Curvature Range Image

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. SI demonstration, with the largest and smallest values represented in yellow and blue, respectively. (a)-(d) Ear

samples from the IIT Indore dataset, and (e)-(h) ear samples from the UND-J2 dataset.

increasing order of the SI values from blue to yellow. Filtering the obtained SI values enables the detection of
high-quality keypoints using a predeined threshold value where an SI value less than the threshold is eliminated.
For instance, points with an SI value greater than a threshold of 0.75, considered as keypoints are highlighted in
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Table 4. Shape classification based on SI values [26].

No. SI Shape category

1 [0, 1/16) spherical cup
2 [1/16,3/16) trough
3 [3/16,5/16) rut
4 [5/16, 7/16) saddle rut
5 [7/16, 9/16) saddle
6 [9/16, 11/16) saddle ridge
7 [11/16, 13/16) ridge
8 [13/16, 15/16) dome
9 [15/16, 1] spherical cap

Fig. 15. A few examples of keypoints detected on UND-J2 dataset ear samples using the SI are shown in blue.

blue, as shown in Figure 15. Keypoints have also been detected using another measure called curvedness,���� (�),

which is also based on �1 and �2. Formally, ���� (�) =

︃

�2
1+�

2
2

2 , where the value of ���� (�) describes the nature of
the surface at point � and is found to be invariant to rotation and scaling. If a selected keypoint has neighbours
belonging to the boundary points, the keypoints are usually discarded.

7.2 Techniques based on surface variation

This section discusses keypoint detection using surface variations in a neighbourhood at each point � for a ixed
radius. Further, these neighbours are used to construct a covariance matrix� deined as� =

∑�
�=1 (�� −�) (�� −�)

� ,
where �� is one of the � neighbours of point � that lie in a chosen radius. Further, eigenvalues �1, �2, �3 where
�1 > �2 > �3 and eigenvectors �1,�2,�3 are obtained from � [59, 190]. A keypoint is deined as any vertex point
that satisies �3

�1+�2+�3
> �1 and

�1
�1+�2+�3

< �2. For predeined thresholds, the detected keypoints are shown in
Figure 16, where most of the keypoints (highlighted in black) are found in curved regions, and very few are found
in lat areas. Though the surface variations-based approach performs better at detecting keypoints, it produces
false positive keypoints in the presence of noise. Figure 17 depicts instances in which keypoints are detected on
lat regions of the ears (left upper corner of the image) due to noise. A technique for inding keypoints using
Gaussian map clustering is proposed in [61]. This technique is inspired by [163], where a cluster is generated on
a unit sphere using the normals at point � and its neighbour. Based on the number of clusters generated, a point
� is classiied as a keypoint. Figure 18 shows an example of Gauss map clustering for two points present on lat
and edge regions produces a diferent number of clusters, two for lat and four for edge regions. Sun et al. [152]
proposed a method for locating key points based on a saliency value calculated at each point using a Gaussian
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Fig. 16. Keypoint detection using surface variation approach on samples from the IIT Indore dataset. The detected keypoints

are highlighted in black.

Fig. 17. The efect of noise on keypoint detection using surface variation approach on samples from the UND-J2 dataset. The

detected keypoints are highlighted in black.

Fig. 18. Keypoint detection using Gauss map clustering. (a) 3D ear data with two selected points �1 located on the edge and

�2 on the flat region, (b) Gauss map shows two pairs of opposite clusters for a point on the edge region, and (c) Gauss map

shows a pair of opposite clusters for a point on the flat region [61].

weighted average of mean curvature values. The saliency values are further iltered via point disk sampling to
verify the robustness of the keypoints.
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(a) (b)

Fig. 19. Keypoint detection in a 3D ear using a co-registered 2D ear image. (a) & (b) Examples of keypoints detected on ear

samples from the UND-J2 dataset where the gray image is the co-registered 2D ear of the 3D ear image. The green points

indicate keypoints detected in the 2D domain, whereas the blue points are keypoints generated by mapping the keypoints of

the 2D ear onto a co-registered 3D ear [130].

(a) (b) (c)

Fig. 20. Mapping 2D curvilinear structure (feature) points onto a co-registered 3D ear image. (a) Detected curvilinear features

in 2D, (b) thinned curvilinear features (red) superimposed on the original 2D ear, and (c) mapped curvilinear features (red)

onto 3D [64].

7.3 Techniques using 2D co-registered ear image

Keypoint detection is performed using 2D co-registered images of the 3D ear. Since each 2D ear point corresponds
to a 3D ear point, 2D images are utilized to locate keypoints in 3D images. Thus, in literature, popular 2D keypoint
detection techniques such as speeded up robust features (SURF) [16] are used to locate keypoints in 2D, which
are then mapped to 3D. In [130], the keypoints in the 2D ear images are detected using SURF [16]. Further, the
detected keypoints are mapped onto the co-registered 3D ear images. A demonstration is shown in Figure 19,
where the igure on the left depicts detected keypoints on a 2D ear image and the igure on the right illustrates
mapped keypoints on a co-registered 3D ear image. Similarly, in [64], the technique detects the curvilinear
structure in a 2D ear image using a 1D polynomial ilter with varying width and rotations. The obtained binary
image and the detected curvilinear structure are shown in Figures 20(a & b). These points serve as keypoints
for the 2D ear image, and they are subsequently mapped onto a co-registered 3D ear image to locate keypoints
in the 3D ear image, as shown in Figure 20(c). In [63], a detailed 3D keypoint detection is demonstrated using
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Fig. 21. Chronological overview of the most relevant 3D ear recognition techniques.

diferent 2D keypoint detectors. However, the techniques that employ co-registered 2D ear images to detect
keypoints in 3D ear images face a few challenges. For instance, 2D ear images that are less illuminated or have
non-frontal ears may produce erroneous keypoints. Moreover, co-registered 2D images for 3D ear images may
not be available in some scenarios.

7.4 Summary

(1) Surface variations, curvatures, and curvedness features can be used to locate keypoints in a 3D ear. The
majority of techniques reviewed so far have relied on one of these properties to detect keypoints. Although
these properties efectively detect keypoints in the 3D ear, they are susceptible to noise and may detect
false keypoints.

(2) A second approach uses a co-registered 2D image to locate the keypoint. This approach does have a
few disadvantages. As previously mentioned, a co-registered image of the 3D ear is not always possible.
Additionally, variations in lighting and posture in 2D can afect the detection of keypoints in 2D images.

8 Ear recognition

This section discusses recognition techniques that use feature descriptor vectors and registration. First, we discuss
registration-based techniques, their drawbacks in terms of convergence, and available methods for improving
their performance. We then discuss feature descriptors and their discriminative power in recognition, including
the local and global descriptors. A chronological overview of the most relevant 3D ear recognition techniques is
given in Figure 21.

8.1 Preliminary: Iterative closest point

Let probe � and gallery � be inite sets with� and � points where � ∈ R�×3 and � ∈ R�×3. For every point
in set � , the nearest neighbour is calculated in set � . These points are known as correspondence points, and a
translation and a rotational matrix are determined using these points to minimize the registration error �.

� (�, �) =

�︁

�=1

�︁

�=1

| |�� − (� (�� ) + �) | |
2 (3)
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where �� ∈ � and �� ∈ � . The matrices � and � are computed using a covariance matrix � = �̄�̄� , where �̄ and �̄
are the mean subtracted matrices. Further, by decomposing the matrix � = �Λ�� , a rotation matrix � = ���

and a translation matrix � = � − � (�) are computed. These matrices are used in iteration to compute registration
errors until the error obtained exceeds a predeined threshold.

8.2 Recognition using registration

This section discusses techniques for 3D ear recognition that focus on rigid where two ear point clouds are itted
together using a sequence of rotation and translation operations. However, in a non-rigid transformation, scaling
of the point cloud is used in addition to the above operations. In existing ear recognition techniques, such as
[170, 171, 173ś176], rigid transformation is used and is mainly achieved by the iterative closest point algorithm
(ICP) [17]. The ICP algorithm computes a sequence of transformations that register two ear point clouds (� ,
� ) by inding the closest point in one point cloud to the other point cloud, called correspondence points. The
registration error between ear point clouds is used to calculate its matching score, with a lower error indicating
a better match. ICP algorithm is accurate in registering ear point clouds; however, it does necessitate a coarse
alignment of two ear point clouds to ensure convergence. Also, the computational cost of registration increases
with the size of the point cloud. However, if the ICP algorithm uses the k-d tree to ind the closest point in the
gallery, the search time reduces to O(���� ), where � is the number of points in the gallery image.

8.2.1 Independent ICP This section discusses techniques that use only the ICP algorithm to match 3D ear.
A large-scale ear experiment is conducted in [171] for recognition using depth images and point clouds. An
edge-based approach and an ICP algorithm are utilized to perform ear matching. Their indings indicate that an
ICP-based approach is more stable and scalable to large datasets. They also presented a technique in [170], an
extension of [171] with data reinements by removing false correspondence matches. Similarly, Yan and Bowyer
proposed an automatic ear recognition based on ICP in [173, 174], whose primary contribution is automatic
ear extraction from proile faces and matching 3D ears using the ICP algorithm. They also introduced another
technique based on the ICP for 3D ear recognition that analyses the efect of posture and sub-sampling on
registration and the use of point-to-point correspondences and point-to-triangle correspondences in inding the
closest points [176]. However, as mentioned previously, all of the above approaches require an initial alignment
between ear pairs to perform efectively. In [23], an ICP-based ear recognition technique using video frame
sequences is proposed. This technique utilized structure from motion (which utilizes multiple images) and shape
from shading (which utilizes a single image) to reconstruct 3D images. This method necessitates several images
for reconstruction, and the process is time-consuming. A few examples of ear registration using ICP are shown
in Figure 22. The probe ear (blue) is registered with ear samples from the gallery (red) to ind the best match, and
the error obtained is used as the matching score. The registration error obtained using the same subject can be
stored as intra-class matching scores and otherwise stored as inter-class matching scores to compute ROC and
EER.

8.2.2 ICP-enhancing techniques To minimize computations and speed up ICP, [175] employs an indexed search
approach where a ixed volume is generated and subdivided into voxel elements. Further, each vertex (�,�, �)

in a given 3D ear is mapped to the nearest voxel (�,�, � ) in the generated ixed volume. The index of the
mapped vertex point is stored using a data structure. To match a probe image, irst, it is indexed using the
same data structure, and further, the closest point in the gallery for each point in the probe is computed. This
approach has enhanced the registration process by reducing the convergence time. However, it is challenging
to ix the voxel size because it afects the resolution and is directly proportional to the data loss. Similarly, to
speed up the ICP matching process, a coarse alignment between the ears is performed using reduced mesh
structures, and the obtained transformation is further used to ine-tune the mesh structure as a whole [79]. This
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Fig. 22. A few examples of registration of probe (blue) and gallery (red) images using the ICP algorithm [17].

Table 5. Summary of registration-based methods in 3D ear recognition.

No. Technique dataset Data Gallery, Probe Recognition Rate (%) Remarks

1 Islam et al. [79] [2008] UND� 2D/3D 300, 300 93.98 It uses reduced mesh with modiied ICP

2 Cadavid et al. [23] [2007] WVU� + UM� Video 61, 25 84.00 Highly suitable for real-time applications

3 Yan & Bowyer [175] [2007] UND 3D 369, 369 98.70 It uses pre-computed voxel nearest neighbour

4 Yan & Bowyer [174] [2007] UND 2D/3D 415, 1386 97.80 Robust to partial occlusion

5 Yan & Bowyer [173] [2006] UND 2D/3D 415, 415 97.60
Automated ear recognition uses 2D for detection
and 3D for recognition

6 Yan et al. [176] [2005] UND 2D/3D 302, 302 98.80 Investigates variants of ICP

7 Yan & Bowyer [171] [2005] UND 2D/3D 404, 404 97.50 Robust to increase in gallery size

8 Yan & Bowyer [170] [2005] UND 2D/3D 302, 302 84.10 Robust to increase in gallery size

� university of Notre Dame, � West Virginia University, � University of Miami

technique’s performance is evaluated using single- and two-step ICP algorithms. In both cases, the rate of rank-1
recognition remains constant. On the other hand, a coarse mesh structure is equivalent to choosing random
points as correspondence points, and due to this, the rough alignment may not always be the same. As a result,
the registration error and time can difer. In [153], a cascaded ICP is used to avoid convergence into local minima,
leading to faster algorithm convergence than the standard ICP. However, the process is time-consuming in a
cascaded setting, where the rigid transformation computed for one level serves as the starting point for the next
level. Table 5 summarizes the performance of available registration-based 3D ear recognition techniques with a
clear indication of the number of gallery and probe samples.

8.3 Recognition using feature descriptor

Global and local features are used in feature-based 3D ear recognition systems. Global feature-based methods
generate feature descriptors for the entire 3D ear. On the other hand, a local feature descriptor is constructed
by encoding the geometrical information of neighbourhood of a point. As a result, local feature descriptors are
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immune to occlusion and are frequently preferred over global descriptor-based approaches in 3D recognition.
Local features are also advantageous in ear recognition since they help detect correspondence between probe
and gallery ear images. Most ear recognition approaches that use local features involve a two-step registration
process. The irst step involves coarse registration using local features, followed by ine registration with the
help of ICP. This section examines ear recognition techniques that utilize global and local features.

8.3.1 Techniques using local descriptors In [101], a shape-based keypoint descriptor is introduced where the
surface around a keypoint is divided equally in the radial and longitudinal dimensions to compute the descriptor.
Further, a feature vector is constructed by concatenating the mean curvedness and SI of the vertices in each
partition. Since this technique relies on curvedness and SI, both are prone to noise, which may be afected in
the presence of noise. A technique described in [56] is attempted to recognize a 3D ear using a generalized 3D
descriptor, the SHOT [140]. However, many additional 3D descriptors have been introduced recently [59, 72, 187],
and therefore there is a strong possibility that the performance may improve by utilizing one among them. In
[185], supervised dictionary learning is presented for ear matching, which divides the input ear image into blocks
and encodes each block as a histogram using surface type information. Finally, the feature vector is constructed
by concatenating the histograms of all blocks. However, there is no practical tool for determining the image block
size. Further, knowing the block numbers for ears of diferent scales and occluded images is also challenging.
Chen and Bhanu proposed a technique in [25] using helix and antihelix structures with two-step ICP. The helix
and antihelix structure is used to ind a coarse alignment, followed by ICP to ind a ine alignment to match
an ear pair. Further, in [28], Chen et al. proposed a local surface patch (LSP) descriptor. It is computed using
geometrical surface information, including normal and curvature. It comprises surface type, centroid, and a 2D
histogram were used to compute the correspondence points for coarse alignment of an ear pair. Then, a ine
alignment is achieved using an ICP algorithm. Using LSP, they also propose another recognition technique [26]
that employs two approaches; the irst uses the helix and antihelix structure of the ear to ind correspondence
points, and the second use LSP to determine correspondence points between the 3D ears being matched. Further,
the probe and gallery are aligned coarsely using point correspondences and then a modiied ICP algorithm. Both
techniques use computationally expensive features of higher dimensional [26, 28]. To address this, they proposed
another technique in [27], which involves mapping higher-dimensional features to a lower-dimensional space;
these reduced feature vectors are used to compute a coarse alignment, followed by an ICP alignment.

Similarly, in [180], LSP is used as a local descriptor to locate keypoints and is then fed into a modiied ICP to
match an ear pair. Similar to helix/antihelix, another technique uses the auricle structure of the ear for coarse
alignment, and ICP for ine alignment [161]. However, as discussed, detecting auricle structure may be challenging
in the presence of noise and occlusions. Islam et al. [83, 84] introduced a local feature descriptor where the
keypoint’s neighbourhood is cropped and used as a feature descriptor. They rely on PCA-derived local coordinates
and change the local axes of the cropped surface if the viewpoint varies signiicantly. Likewise, in [152, 154], a
feature vector is generated by itting a quadratic surface using [195] to the neighbours of each keypoint. Further,
the itted surface is used to construct a feature descriptor vector. Smoothing is involved in this technique and
may lead to loss of geometric information. In [179] a 3D Center-Symmetric Local Binary Pattern (3D CS-LBP) is
introduced. At each keypoint, a range image is generated by projecting the neighbours with the help of local axes.
Further, 3D CS-LBP is applied to the range image to derive local features, which is used in matching an ear pair. In
[59], a descriptor based on geometric statistics is introduced where the descriptor is constructed in three phases
at each key point, based on the distribution of neighbours and the normal angles of neighbours in annular regions
of concentric spheres, and the distance of neighbours from a plane perpendicular to the keypoint’s normal. This
technique inds correspondence points using the computed features and then inds the match using ICP. Dong
et al. [43] generated depth images by rotating a 3D point cloud around local axes and used a 2D descriptor to
compute feature vectors for the obtained depth images to match the 3D ear. As the original image’s dimension
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(a)
(b)

(c) (d)

Fig. 23. Outline of 3D ear recognition using local descriptors and ICP [59]. (a) Keypoints detection (blue highlights) on

probe and gallery images, (b) local feature computed at each keypoint in probe and gallery image is matched to find the

correspondence points, (c) coarse alignment using correspondence points, and (d) ICP algorithm on the entire ear pairs for

fine registration.

is reduced, information may be lost while transforming to depth images. Figure 23 depicts a visual example of
the contribution of local feature descriptor and ICP in ear matching. First, keypoints (highlighted in blue) are
detected in both images, followed by obtaining correspondences between the probe and gallery images using the
local features computed at each keypoint to get an initial transformation. Finally, the ICP algorithm is utilized to
obtain a ine registration.

8.3.1.1 Performance enhancing approaches using local descriptors A fast index-based ear recognition method
to reduce the gallery search space by inding the closest match among all gallery images for a given probe ear
image in a constant search time is proposed in [107, 111]. The technique presented in [111] extracts feature
vectors of each keypoint using the method described in [190], and the primary objective is to reduce the time
required for matching, which is accomplished by using a balanced and unbalanced data split. The technique
claims a 50% reduction in search space, which has decreased matching time. Similarly, [107] proposed an ear
parotic face angle to reduce the search space. The ear parotic face angle is calculated using the angle between the
normals of two planes, the ear and face planes. Further, the obtained angle is used to index each ear image in the
gallery. To match a probe ear, the ear parotic face angle of the probe ear is computed and searched for the closest
angle match in the gallery images. It retains the matching time constant and scalable to large datasets. In [192], a
global index search-based technique matches ears. They used ear shapes to create the KD tree for the gallery
set. Consequently, an indexed-based search lists the gallery images that match the probe image. Since the listed
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Fig. 24. Ear recognition using 3D and co-registered 2D ear images [63].

images are small in relation to the total number of images in the gallery, the search process is accelerated, and
performance has improved. In [188], Zhang et al. presented a technique that employs the ICP-LSV algorithm to
avoid coarse to ine registration to achieve fast and accurate convergence. Local surface variations are used to
remove the lat non-ear data to generate normalized and reined ear data. The convergence during the registration
process has improved because the undesired portion has been deleted from the reined ear data. However, the
method is noise-prone, and it may be diicult to remove non-ear data in the presence of noise. Flat structures like
the ear lobe, which are important for gender identity [113], may be removed as non-ear data cause data loss and
degrades the recognition performance.

8.3.1.2 Techniques using 2D and 3D ears This section reviews the techniques that use 3D ear images and co-
registered 2D images for ear recognition. In literature, 2D and 3D ears have been associated diferently, such as in
detection, recognition, and segmentation. An outline of the role of 2D and 3D ears in recognition is illustrated in
Figure 24.

(1) Several works employ a multimodal biometrics approach, where 2D and 3D ears are used as diferent
modalities [29, 172]. These studies demonstrate that fusing the matching scores obtained from 2D ear
images and 3D ear models can improve recognition performance.

(2) A few other works have used 2D ear images to extract feature keypoints from 3D ear images. The reason is
that 2D keypoint detection algorithms are more mature than 3D keypoint detection algorithms, which are
still in their early stage. For instance, in [63, 64, 130], keypoints detected on co-registered 2D ear images
were used to compute feature keypoints in corresponding 3D ear images.
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(3) There are a few other works, such as [26, 79, 173, 174], where co-registered 2D ear images are used to
detect and segment ears in 3D proile images.

Yan and Bowyer examined the ear’s recognition performance in [172] using multimodal, multi-algorithm, and
multi-instance approaches. This technique is similar to [170] and [171], except it includes a detailed 2D and 3D
data analysis and algorithms. They conclude that the multimodal approach performs better than the other two:
PCA on 2D ear images and ICP on 3D ear images. Prakash and Gupta [130] detected feature keypoints in a 2D
image and then mapped them onto a co-registered 3D image. The mapped keypoints are used to align two 3D ears
coarsely, and then a ine alignment is obtained using a modiied ICP algorithm. Ganapathi et al. [64] presented a
technique to detect feature keypoints in 2D ear images using curvilinear structures. These structures are used as
keypoints in 2D and are later mapped onto the co-registered 3D ear image to get the feature keypoints. Further,
each keypoint in the 3D ear is described using a descriptor [68], and the obtained feature descriptor vectors are
then used to match an ear pair. Texture and depth scale-invariant feature transform (TDSIFT), a modiied SIFT
descriptor proposed in [29], where texture information from a 2D ear with depth information from a 3D ear is
combined to create a descriptor. Ear pairs are matched using these descriptor vectors. Similarly, [30] proposed
a sparse dictionary-based descriptor that uses 2D texture information and 3D shape information to construct
a descriptor. Overall, ear data from 2D and 3D domains are required to implement the discussed approaches.
However, there is no guarantee that 3D ear data and its co-registered 2D ear data will always be available in
real-time. Table 6 summarizes the performance of local feature-based 3D ear recognition techniques with a clear
indication of the number of gallery and probe samples.

8.3.2 Techniques using global and local descriptors Global features are computed using the entire 3D ear model.
Although ICP-based approaches are discussed separately in Section 8.2; we can also classify them as global since
they use the entire image of the probe and gallery ears for registration. Passalis et al. created a unique global
signature for an ear using an annotated ear model (AEM). The data is itted with this model, and an image is
extracted. Further, signatures are created from the extracted image and utilized to match an ear pair [125, 157]. In
[104], a matching algorithm based on a global sliced curve is computed using principal components. These curves
are compared using the nearest neighbour classiier and show a ive-fold reduction in matching time compared
to ICP matching. However, in contrast to ICP, recognition eiciency has deteriorated slightly. Global features are
generally less efective in matching ears than local features. On the other hand, global features are more robust
to noise than local features. Consequently, global features are often combined with local descriptors to enhance
performance when noise and occlusion are present [62, 190].
Zhou et al. [190, 191] introduced a match score fusion of local and holistic features for 3D ear recognition. A

local surface is cropped and divided into four sub-regions for a predeined radius to compute the local descriptor
at each keypoint. Using the SPHIS, each sub-region is encoded as a feature vector and concatenated to construct a
inal feature descriptor vector. Further, 3D ears are converted into voxels and arranged as a single-column vector
to construct a global descriptor. The global features are matched using cosine similarities to get a matching score.
Since the feature descriptor uses voxelization as a global feature, changes in voxel resolution may impact the
recognition performance. Likewise, 3D ear recognition is performed in [106] using a combination of global features,
such as empty centers and angles, and local features, using points, lines, and areas. Normalized coordinates are
used to calculate these features, however, the coordinates are not stable in the presence of occlusions and noise,
and it may afect the performance of the descriptor. Similarly, [62] proposed a technique based on weighted
combinations of four 3D local descriptors [68, 98, 139, 140] and a global descriptor. This technique has enhanced
recognition performance by combining the discriminative strength of each local descriptor. The global descriptor,
local sphere geometry pattern (LSGP), is based on histograms, similar to the local binary pattern [123] is used
along with the local descriptors to match ears. Further, methods for 3D ear recognition based on local joint
structural (LJS), a modiied version of surface patch histogram of indexed shape (SPHIS) [190], is introduced in
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Table 6. Summary of local feature-based methods in 3D ear recognition.

No. Technique dataset Data Gallery, Probe Recognition Rate (%) Remarks

1 Ganapathi et al. [59] [2020] UND-J2 3D 404, 1376 98.60 Robust to noise and occlusion

2 Ganapathi et al. [58] [2019] UND-J2 3D 404, 1376 98.00 Recognition using a hybrid descriptor

3 Zhu & Mu [192] [2018] UND-J2 3D 415, 415 98.50 Reduces the search space

4 Ganapathi et al. [64] [2018] UND-J2 2D/3D 404, 1376 98.69 3D ear recognition using 2D ear

5 Zhang et al. [188] [2017] UND-J2 2D/3D 415, 415 98.55 ICP convergence has improved

6 Chen et al. [29] [2017] UND-J2 2D/3D 415, 415 95.90 Modiied SIFT is used

7 Chen et al. [30] [2015] UND-J2 3D 415, 415 96.40 Dictionary based hybrid descriptor

8 Sun et al. [154] [2015] UND-J2 3D 415, 415 89.61 Graph-based recognition technique

9 Maity et al. [111] [2015] UND-J2 3D 415, 415 98.50 Improved matching time

10 Zhang et al. [185] [2015] UND-J2 3D 468, 168 100.00 Suitable for large-scale data

11 Zeng et al. [180] [2014] UND-J2 3D 100, 100 94.00 Reduces the iteration time of ICP

12 Prakash & Gupta [130] [2014] UND-J2 2D/3D 404, 1376 98.30 Enhanced performance using modiied ICP

13 Sun et al. [152] [2014] UND-J2 3D 415, 415 95.10 Reduces the matching time

14 Wang & Mu [161] [2013] UND-J2 3D 415, 415 97.59 Robust to pose variation

15 Lei et al. [101] [2013] UND-J2 3D 415, 415 97.40 Captures macro-shape patterns

16 Islam et al. [83] [2011]
UND-F
UND-J2

2D/3D
302, 302
415, 415

95.40
93.50

3D ear detection using 2D ear images
and recognition using 3D ear images

17 Dong & Guo et al. [43] [2011] UND-J2 3D 415, 415 98.87 SIFT based matching

18 Zeng et al. [179] [2010] UND-J2 3D 415, 415 96.39 3D local binary pattern

19 Chen & Banu [27] [2009]
UND-F
UCR

3D
302, 302
155, 155

96.70
94.90

Low dimension embedding-based ear
matching

20 Chen & Bhanu [26] [2007]
UCR
UND-G

3D
155, 155
302, 302

96.77
96.36

Robust to rigid transformation

21 Chen et al. [28] [2005] UCR 3D 52, 52 90.40 Robust to noise

22 Chen & Bhanu [25] [2005] UCR 3D 30, 30 93.30 Introduced a two-step ICP for ear matching

[193, 194]. SPHIS is a shape-indexed dependent descriptor that is not robust to noise, so the efectiveness of this
technique in the presence of noise is unknown. Further, voxelization of 3D ear is used as the global feature and
uses game-theoretic matching to compute the similarity of ear pairs. Table 7 summarizes the performance of
global and local feature-based 3D ear recognition techniques with a clear indication of the number of gallery and
probe samples.

8.4 Summary

(1) ICP-based registration is a widely used technique for matching ears. Variants of ICP are available in the
literature; however, the majority of the techniques have used the base version of ICP.

(2) The ICP algorithm is highly accurate and performs well in recognition; however, the time required to
compare a pair of 3D ears increases as the number of vertices in the 3D ear data increases. To address this, a
few approaches are introduced to speed up the ICP algorithm, and it has been observed that these methods
signiicantly reduce the amount of time necessary for matching.

(3) Feature-based techniques can also be used to accelerate the matching process. Combining a feature-based
technique with ICP results in a more optimal matching if it can accurately locate correspondence points.

(4) 2D and 3D co-registered ear data are employed, with 2D data primarily used to detect keypoints in 3D.
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Table 7. Summary of global and/or local feature-based 3D ear recognition techniques.

No. Technique dataset Data Gallery, Probe Recognition Rate (%) Remarks

1 Zhu and Mu [194] [2020] UND-J2 3D 415, - 98.82
SPHIS based descriptor, ICP is not used
in matching phases (global and local)

2 Zhu and Mu [193] [2018] UND-J2 3D -, - 98.80 Robust to occlusion (global and local)

3 Ganapathi et al. [62] [2018]
UND-J2
IIT-Indore�

3D
404, 1376
70, 350

98.69
98.90

Fusion of global and local scores
in matching (global and local)

4 Zhang et al. [106] [2016] In-house 3D 500, 1500 - A fast approach to match 3D ear (global and local)

5 Zhou et al. [191] [2012] UND-J2 3D 415, 1386 98.00 Robust to pose variations (global and local)

6 Zhou et al. [190] [2011] UND-J2 3D 415, 415 98.60
Robust to pose variations and fast in
matching ear pairs (global and local)

7 Theoharis et al. [157] [2008] UND - F & G 3D 324, 324 95.00
It uses the annotated deformable model, and
a signature is constructed for ear matching (global).

8 Passalis et al. [125] [2007] UND + Inhouse 3D 525, 506 94.40 It uses annotated ear model (global)
� Indian Institute of Technology Indore

9 Recognition using deep learning

Compared to classical features, learning-based features demonstrate better performance and lead to the publication
of several works in ear detection and recognition utilizing deep learning [48, 57, 92]. However, the lack of datasets
and the structure of the 3D data is challenging and has become an obstacle to a deep neural network to attain
reasonable accuracy compared to traditional approaches. Nevertheless, there have been very few deep learning-
based approaches in 3D ear recognition, and given the importance of deep learning, we have dedicated this
section to discussing a few available techniques. In [58], an auto-encoder is used to extract features from a 3D
ear for recognition. In this technique, 3D ears are transformed into depth images, and each image is fed to a
deep auto-encoder to compute a reduced feature. Depth images are obtained at each keypoint by projecting the
neighbouring points onto a set of computed local axes. Despite using a learning-based approach to extract 3D ear
descriptors, the features obtained are from projected 2D images. Though the direct application of deep learning
to the 3D ear is lacking, we evaluated performance using the seminal recognition 3D network, PointNet [132], on
two small sets of 3D ear subjects, choosing two groups of ten and nineteen subjects at random for the experiment.
Further, an ear sample from a subject is used as a probe, while other samples are used as a gallery. For 100 epochs,
we achieved an accuracy of 80% for the irst set and 68.40% for the second set. Figure 25 depicts the obtained
results as a confusion matrix. The results show that the performance has been dramatically lowered with a slight
scaling of the data volume. Although preprocessing and augmentation can increase deep learning performance,
an extensive dataset is necessary to achieve the performance of state-of-the-art classical techniques.

10 Future research directions

Despite the voluminous work developed in ear biometrics, there are still vital issues, open problems, and future
research directions, which we shed some light on in this section.

• Ear detection and segmentation from proile face images remain an open issue in 3D ear biometrics.
There are techniques in the literature for segmenting the ear in 3D proile face images using co-registered
2D proile face images [79]. For instance, in [174], the nose pit is used as a reference point to locate the ear,
and in [25, 26], helix and antihelix ear structures are used to locate the ear. These techniques rely on 2D
co-registered images to detect the ear in 3D. These techniques face challenges where pose changes may
afect the nose pit of the reference subject, and as a result, it cannot always be used as a valid reference
point for 3D ear segmentation [174]. Similarly, the detection of helix/antihelix structures is based on
edge detection methods that may become unstable in the presence of noise [26]. As a result, novel 3D
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(a) (b)

Fig. 25. Performance of PointNet on two sets of data constructed from UND-J2. (a) Confusion matrix for the first set, and (b)

confusion matrix for the second set.

ear detection approaches are required. Additionally, all existing detection algorithms are valid on images
collected in constrained environments; thus, there is a need to investigate methods for 3D ear detection
with little or no controlled environments. Apart from these detection approaches, only a few approaches are
described in the literature that can detect the ear in 3D without using co-registered 2D images [116, 118].
Therefore, it is essential to examine ear localization in the 3D domain to construct reliable 3D ear detectors.

• Age invariant nature of the ear is still a subject of debate, with limited scientiic studies. A few scientiic
articles discuss the aging efect and its consequences [55]. However, these works conine their examination
of the age-invariant to a short period. For instance, the study published in [78] utilized a dataset collected
over eleven months to examine the recognition eiciency in month-to-month changes in the ear; however,
such a limited time frame is insuicient to demonstrate the age-invariant nature of the human ear. The
dataset must be collected over a more extended period in multiple phases with a minimum of one year
between consecutive steps to determine the ear’s age-invariant nature. Additionally, the focus is to track
the ear changes due to age alone; therefore, the data used in the analysis should be free from the pose,
lighting, and scale variations. Hence, 3D images are suitable since they are relatively free of these inluences.
As a result, analyzing the age invariance of the human ear would be more approachable using 3D data.

• Inheritance is an exciting area of study in ear biometrics, and according to Iannarelli’s study [76], it may
inherit a few ear features. This argument, however, should be thoroughly investigated because this could
pose a serious threat to ear-based biometric systems by jeopardizing the ear’s uniqueness. It is essential to
create an extensive ear dataset comprised of multiple individuals of various families to conduct a study on
this topic.

• Morphable models (MM) is an efective mathematical technique for describing 3D shapes. It provides a
useful encoding and prior statistical distribution for the shape and texture of the 3D data. New data samples
can be generated by exploiting the space spanned by the shape and texture of the training data. In [39], [38],
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a dataset14 comprising 3D morphable models (3DMM) of the head, face, and ear is introduced, and in [21]
morphable models of face proile and ear using noisy, incomplete, and occluded data are created. However,
A large dataset with annotation is required to build a 3DMM. Therefore, 3DMM should be explored in
greater depth to develop diferent sets of datasets that can be used for gender identiication and symmetry
analysis and to study the efect of inheritance and age invariance on ear biometrics.

• Deep learning paradigm gained popularity and wide deployment in several biometric modalities [4, 18,
89, 155, 159]; however, its usage in 3D ear biometrics is still in its infancy due to several reasons. One of
the most signiicant issues is the scarcity of samples per subject in the datasets used to train the network.
Current 3D ear datasets contain a small number of samples, usually two or three per subject. This issue
can be addressed using data augmentation and synthetic data. However, augmenting point cloud data
of world coordinates is challenging. Leveraging the power of a deep network, a recent work using a
scene representation network [149] addresses this problem where any test data could be rendered for
unseen views [127]. Further, synthetic data may be another solution, but its resemblance to actual data
remains unclear. Due to this, despite having several ear recognition techniques in 2D using deep learning
[5, 8ś11, 19, 49, 50, 53, 91, 95, 96, 124, 134, 136, 143, 146, 148, 151, 184], only limited techniques available
for recognition in 3D. Considering the large arsenal of 3D recognition techniques [69], we believe there is
enormous potential in leveraging 3D recognition deep learning models through domain adaptation and
meta-transfer learning [74]. This paradigm can also help address the scalability problem. Additionally,
deep learning-based point cloud registration could be used more eiciently to register ear images than
traditional registration techniques. As demonstrated in [34], registration based on deep learning has a lower
computing cost than classical approaches. Similarly, 3D point cloud completion [164], and upsampling
[103] from deep learning may be used in preprocessing 3D ears to ill the missing portion of the ear and
create upsampled versions of the ear samples.

• Data quality assessment is a well-studied subject in the 2D domain. However, very little research has
been conducted to assess the quality of 3D biometrics data. Additionally, the quality assessment in 3D is
application-dependent. For example, we cannot use the same quality standards on 3D biometrics data as on
3D building data. The author of [41] addresses the efect of data quality on performance; however, further
research in establishing proper quality measures for assessing 3D ear data for the biometric application
is still necessary. The interoperability of sensors should also be considered when setting such quality
standards.

• Symmetry is another fascinating ield of study in ear biometrics, which may be advantageous for recogni-
tion, occluded ear construction, and multimodal recognition. Symmetry refers to the similarity between an
individual’s left and right ears. For example, if a person enrolls in a biometric system using their left ear,
can they be veriied using their right ear? This question has been discussed in a few research publications
in the 2D domain [1] and [113]. Symmetry studies typically match a subject’s ear to its mirror image.
However, [1] reported that a signiicant portion of a person’s left and right ear regions are asymmetrical. To
corroborate this result, an experiment with left and right proile faces, and left and right ears was performed
in [158], which discovered that the left and right proile faces resemble the left and right ears. Recently, a
comprehensive investigation was conducted in [113] to determine which portion of the ear is responsible
for gender identity and symmetry. In contrast to [1], this study concluded a strong likelihood of symmetry
between the left and right ears; therefore, it can be used for recognition. However, it also emphasizes using
the middle portion of the ear in recognition. Most research exploring symmetry in ear biometrics has
been performed on 2D images. The rich geometric features of the 3D ear could be an excellent choice for

14https://www-users.cs.york.ac.uk/ nep/research/YEM/
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investigating symmetry [37]; however, only a single work has been reported so far in this context [181].
We believe there is still wide room to explore and leverage ear symmetry property in 3D ear recognition.

11 Conclusions

This paper has presented a contemporary survey of the state-of-the-art methods for 3D ear recognition. First,
the approaches for keypoint detection in 3D ears are discussed, and to give a qualitative view, results for a few
approaches are reproduced. Further, 3D ear recognition techniques based on registration and feature-descriptor-
based techniques are discussed. A comprehensive taxonomy and chronological overview of these methods have
been presented. Merits and demerits of various methods are also covered, with potential research directions
being listed.
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