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Abstract. We address the issue of segmenting multiple textured objects
in presence of a background texture. The proposed technique is based
on Geodesic Active Contour (GAC) and can segment multiple textured
objects from the textured background. For an input texture image, a
texture feature space is created using scalogram obtained from discrete
wavelet transform (DWT). Then, a 2-D Riemannian manifold of local
features is extracted via the Beltrami framework. The metric of this
surface provides a good indicator of texture changes, and therefore, is
used in GAC algorithm for texture segmentation. Our main contribution
in this work lie in the development of new DWT and scalogram based
texture features which have a strong discriminating power to define a
good texture edge metric which is used in GAC technique. We validate
our technique using a set of synthetic and natural texture images.
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1 Introduction

Active contours are extensively used in the field of computer vision and image
processing. In this paper, we present a texture object segmentation technique
which is based on Geodesic Active Contour (GAC) [1] and discrete wavelet trans-
form (DWT) based texture features, and can segment multiple textured objects
from the textured background. Our algorithm is based on the generalization of
the GAC model from 1-D intensity based feature space to multi-dimensional fea-
ture space [2]. In our approach, image is represented in a n-dimensional texture
feature space which is derived from the image using scalograms [3] of the DWT.
We derive edge indication function (stopping function) used in GAC from the
texture feature space of the image, by viewing texture feature space as Rieman-
nian manifold. Sochen et al. [4] showed that the images or image feature spaces
can be described as Riemannian manifolds embedded in a higher-dimensional
space, via the Beltrami framework. Their approach is based on the polyakov ac-
tion functional which weights the mapping between the image manifold (and its
metric) and the image features manifold (and its corresponding metric). In our
approach, a 2-D Riemannian manifold of local features is extracted from the tex-
ture features via the Beltrami framework [4]. The metric of this surface provides
a good indicator of texture changes, and therefore, is used in GAC for texture
segmentation. The determinant of the metric of this manifold is interpreted as
a measure of the presence of the gradient on the manifold.
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Similar approaches where the GAC scheme is applied to some feature space
of the images, were studied in [5–7]. The aim of our study is to generalize the
intensity based GAC model and apply it to DWT and scalogram based wavelet
feature space of the images. Our main contribution in this work lie in the de-
velopment of new texture features which give a strong texture discriminating
power and in turn, use of these features to define a good texture edge metric to
be used in GAC algorithm.

2 Background

2.1 Geodesic Active Contour

Here, we briefly review of the GAC model presented in [1]. Let C(q) : [0, 1] →
R2 be a parameterized curve, and let I : [0,m] × [0, n] → R+ be the image
where we want to detect the objects boundaries. Let g(r) : [0,∞] → R+ be an
inverse edge detector, so that g → 0 when r →∞. g represents the edges in the
image. Minimizing the energy functional proposed in the classical snakes [8] is
generalized to finding a geodesic curve in the Riemannian space with a metric
derived from the image by minimizing following functional:

LR =
∫

g(|∇I(C(q))|)|C ′
(q)|dq (1)

where, LR is a new length definition (called geodesic length) in the Riemannian
space. It can be considered as a weighted length of a curve, where the Euclidian
length is weighted by a factor g(|∇I(C(q))|), which contains information regard-
ing the edges in the image. To find this geodesic curve, steepest gradient descent
is used which gives following curve evolution equation to get the local minima
of LR.

dC

dt
= g(|∇I|)kN− (∇g.N)N (2)

where, k denotes Euclidian curvature and N is a unit inward normal to the
curve. Let us define a function u : [0,m] × [0, n] → R such that curve C is
parameterized as a level set of u, i.e. C = {(x, y)|u(x, y) = 0}. Now, we can use
the Osher-Sethian level sets approach and replace above evolution equation for
the curve C with an evolution equation for the embedded function u as follows:

du

dt
= |∇u|div

(
g(∇I)

∇u

|∇u|
)

(3)

where, div is divergence operator. Stopping function g(∇I) is generally given by
g(∇I(x, y)) = 1

1+|∇I(x,y)|p , where p is an integer and usually equal to 1 or 2.
The goal of g(∇I) is to stop the evolving curve when it reaches to the object
boundary. For an ideal edge, ∇I is very large so g = 0 at the edge and the curve
stops (ut(x, y) = 0). The boundary is then given by u(x, y) = 0.



(a) (b) (c)

Fig. 1. (a) Synthetic texture image, (b) Magnified view of 21 × 21 window cropped
around point P , shown in Fig. 1(a); (c) Mean texture feature image of Fig. 1(a).
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Fig. 2. (a) 1-D texture profile of Fig. 1(b); (b) Scalogram of the texture profile.

2.2 Discrete Wavelet transform (DWT) and scalogram

DWT analyses a signal based on its content in different frequency ranges. There-
fore, it is very useful in analyzing repetitive patterns such as texture. DWT de-
composes a signal into different bands (approximation and detail) with different
resolution in frequency and spatial extent. Let ξ(x) be the image signal and
ψu,s(x) be a wavelet function at a particular scale, then signal filtered at point
u is obtained by taking the inner product of the two < ξ(x), ψu,s(x) >. This
inner product is called wavelet coefficient of ξ(x) at position u and scale s [9].
Scalogram [3] of a signal ξ(x) is the variance of this wavelet coefficient:

w(u, s) = E{| < ξ(x), ψu,s(x) > |2} (4)

The w(u, s) has been approximated by convolving the square modulus of the
filtered outputs with a Gaussian envelop of a suitable width [3]. The w(u, s)
gives the energy accumulated in a band with frequency bandwidth and cen-
ter frequency inversely proportional to scale. We use scalogram based discrete
wavelet features to model the texture characteristics of the image in our work.

3 Texture Feature Extraction

In this section, we explain how DWT is used to extract texture features of the
input image. It discusses the computational framework based on multi-channel
processing. We use DWT-based dyadic decomposition of the signal to obtain



texture properties. A simulated texture image shown in Fig. 1(a) is used to illus-
trate the computational framework with the results of intermediate processing.
Modeling of texture features at a point in an image involves two steps: scalogram
estimation and texture feature estimation. To obtain texture features at a par-
ticular point (pixel) in an image, a n×n window is considered around the point
of interest (see Fig. 1(b)). Intensities of the pixels in this window are arranged
in the form of a vector of length n2 whose elements are taken column wise from
the n × n cropped intensity matrix. Let this intensity vector (signal) be ξ. It
represents the textural pattern around the pixel and is subsequently used in the
estimation of scalogram.

3.1 Scalogram estimation

1-D input signal ξ, obtained after arranging the pixels of n × n window as ex-
plained above, is used for the scalogram estimation. Signal ξ is decomposed using
wavelet filter. We use orthogonal Daubechies 2-channel (with dyadic decompo-
sition) wavelet filter. Daubechies filter with level-L dyadic decomposition, yields
wavelet coefficients {AL,DL,DL−1 , ..,D1} where, AL represents approximation
coefficient and Di’s are detail coefficients. The steps of processing to obtain
scalogram from the wavelet coefficients are described in [10]. Fig. 2(b) presents
an example of scalogram obtained for the signal shown in Fig. 2(a) using level-4
DWT decomposition.

3.2 Texture Feature Estimation

Once the scalogram of the texture profile is obtained, it is used for texture
feature estimation. Texture features are estimated from the “energy measure”
of the wavelet coefficients of the scalogram subbands. This texture feature is
similar to the “texture energy measure” proposed by Laws [11].

Let E be the texture energy image for the input texture image I. E defines a
functional mapping from 2-D pixel coordinate space to multi-dimensional energy
space Γ , i.e. E : [0,m]× [0, n] → Γ . Let for the kth pixel in I, Dk be the set of
all subbands of scalogram S and Ek ∈ Γ be the texture energy vector associated
with it. Texture energy space, Γ , can be created by taking the l1 norm of each
subband of the scalogram S. Then, Γ represents L+1 dimensional energy space
for level-L decomposition of the texture signal. Formally, ith element of the
energy vector Ek belonging to Γ , is given as follows:

E(k,i) =
1
N





∑

j

S(i,j)



 (5)

where, i represents a scalogram subband of set Dk, S(i,j) is the jth element of
the ith subband of scalogram S and N is the cardinality of the ith subband.
Texture energy image computed using Eqn. 5 is a multi-dimensional image and
provides good discriminative information to estimate the texture boundaries.



These texture energy measures constitute a texture feature image. Fig. 1(c)
shows an image obtained by taking the mean of all bands of a texture energy
image computed using Eqn. 5 for the texture image shown in Fig. 1(a).

One common problem in texture segmentation is the problem of precise de-
tection of the boundary efficiently. A pixel near the texture boundary has neigh-
boring pixels belonging to different textures. In addition, a textured image may
contain a non-homogeneous, non-regular texture regions. This would cause the
obtained energy measure to deviate from “expected” values. Hence, it is neces-
sary that the obtained feature image be further processed to remove noise and
outliers. To do so, we apply smoothing operation to the texture energy image in
every band separately. In our smoothing method, the energy measure of the kth

pixel in a particular band is replaced by the average of a block of energy mea-
sures centered at pixel k in that band. In addition, in order to reduce the block
effects and to reject outliers, the p percentage of the largest and the smallest
energy values with in the window block are excluded from the calculation. Thus,
the smooth texture feature value of pixel k in ith band of the feature image is
obtained as:

F(k,i) =
1

w2(1− 2× p%)





(w2)(1−2×p%)∑

j=1

E(k,j)



 (6)

where, E(k,j)s are the energy measures within the w × w window centered at
pixel k of ith band of the texture energy image. The window size w × w and
the value of p are chosen experimentally to be 10 × 10 and 10 respectively in
our experiments. Texture feature image F , computed by smoothing the texture
energy image E as explain above, is used in the computation of texture edges
using inverse edge indicator function which is described in the next section.

4 Geodesic Active Contours for Texture Feature Space

We use GAC technique in the scalogram based wavelet texture feature space by
using the generalized inverse edge detector function g proposed in [5]. GAC, in
presence of texture feature based inverse edge detector g, is attracted towards
texture boundary.

Let X : Σ → M be an embedding of Σ in M , where M is a Riemannian
manifold with known metrics, and Σ is another Riemannian manifold with un-
known metric. As proposed in [7], metric on Σ can be constructed using the
knowledge of the metric on M using the pullback mechanism [4]. If Σ is a 2-D
image manifold embedded in n-dimensional manifold of texture feature space−→
F = (F 1(x, y), ..., Fn(x, y)), metric h(x, y) of 2-D image manifold can be ob-
tained from the embedding texture feature space as follows [7]:

h(x, y) =
(

1 + Σi(F i
x)2 ΣiF

i
xF i

y

ΣiF
i
xF i

y 1 + Σi(F i
y)2

)
(7)
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Fig. 3. Results on synthetic images: (a) Input images with initial contour, (b) Texture
edge maps, (c) Segmentation results.

Then, stopping function g used in GAC model for texture boundary detection
can be given as the inverse of the determinant of metric h as follows [5]:

g(∇I(x, y)) =
1

1 + |∇I(x, y)|2 =
1

det(h(x, y))
(8)

where, det(h) is the determinant of h. Eqn. 3, with g obtained in Eqn. 8, is used
for the segmentation of the textured object from the texture background.

4.1 Segmenting multiple textured objects

As GAC model is topology independent and does not require any special strategy
to handle multiple objects, proposed method can segment multiple textured
objects simultaneously. Evolving contours naturally split and merge allowing
the simultaneous detection of several textured objects so number of objects to
be segmented in the scene are not required to be known prior in the image.
Section 5 presents some multiple textured objects segmentation results for the
synthetic and natural images.

5 Experimental Results

We have used our proposed method on both synthetic and natural texture images
to show its efficiency. For an input image, texture feature space is created using
the DWT and scalogram, and Eqn. 5 is used for texture energy estimation. We
use the orthogonal Daubechies 2-channel (with dyadic decomposition) wavelet
filter for signal decomposition. The metric of the image manifold is computed
considering the image manifold embedded in the higher dimensional texture
feature space. This metric is used to obtain the texture edge detector function of
GAC. Initialization of the geodesic snake is done using a signed distance function.

To start the segmentation, an initial contour is put around the object(s) to be
segmented. Contour moves towards the object boundary to minimize objective
function LR (Eqn. 1) in the presence of new g (Eqn. 8). Segmentation results
obtained using proposed technique are shown in Fig. 3 and Fig. 4 for synthetic
and natural images respectively. Input texture images are shown with the initial
contour (Fig. 3(a) and Fig. 4(a)). Edge maps of the input synthetic and natural



texture images, computed using Eqn. 8, are shown in Fig. 3(b) and Fig. 4(b)
respectively. Final segmentation results are shown in Fig. 3(c) and Fig. 4(c).
Results obtained are quite encouraging and promising.

Fig. 5 shows comparative results for zebra example. We can carefully observe
that our result is superior than the results of other techniques. The results re-
ported in the literature show errors in any one of the following places of the
object (mouth, back, area near legs etc.). The overall computation cost (which
includes the cost of texture feature extraction and segmentation) of the proposed
method lies in the range of 70 to 90 seconds on a P-IV, 3 GHz machine with 2
GB RAM for images of size 100× 100 pixels.

(a) (b) (c)

Fig. 4. Results on natural images: (a) Input images with initial contour, (b) Texture
edge maps, (c) Segmentation results.

6 Conclusion

In this paper, we present a technique for multiple textured objects segmentation
in the presence of background texture. The proposed technique is based on GAC



and can segment multiple textured objects from the textured background. We
use DWT and scalogram to model the texture features. Our main contribution
in this work lie in the development of new DWT and scalogram based texture
features which have a strong discriminating power to define a good texture edge
metric to be used in GAC. We validated our technique using various synthetic
and natural texture images. Results obtained are quite encouraging and accurate
for both types of images.

(a) (b) (c) (d)

Fig. 5. Comparative study of results: (a) reproduced from [12], (b) reproduced from
[13], (c) obtained using the method presented in [14], (d) proposed technique.
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