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Abstract
In the rapidly evolving Internet of Things (IoT) ecosystem, the integration of Software-Defined Networking
(SDN) with edge computing is critical for optimizing performance in IoT applications. This paper introduces
a novel framework, named D-RESIN, designed to dynamically orchestrate resources within IoT-enabled
SDN at the edge, explicitly focusing on minimizing delays. The proposed framework employs evolutionary
game theory to manage and optimize resource allocation across IoT devices, Open vSwitches, and Edge
nodes. We implemented the proposed D-RESIN schemes using the Mininet network emulator with Ryu
SDN controller and Open vSwitches. We found out that D-RESIN reduces average processing delay at the
access tier by 52.43-88.82% and 32.71-87.91% compared to the existing scheme — T-RESIN and FlowMan,
respectively. At the edge tier, D-RESIN decreases the average processing delay by 35.44-85.10% compared
to T-RESIN. These simulation results highlight the effectiveness of D-RESIN in enhancing scalability and
efficiency for delay-sensitive IoT applications.
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1 INTRODUCTION

The Internet of Things (IoT) represents a transformative evolution in the digital landscape, where interconnected devices and
sensors seamlessly integrate to collect, exchange, and process data in real-time1,2. Traditional IoT architectures relying on
centralized cloud computing suffer from high latency and response time issues, making them unsuitable for delay-sensitive
applications3,4,5,6. These limitations hinder real-time processing for IoT applications at the edge. Hence, we plan to integrate IoT
with Software-Defined Networking (SDN) at the edge computing environment that decouples the network control plane from
the data plane7,8,9,10. As per the current scenario, traditional IoT network infrastructures often struggle with latency issues and
cannot meet the dynamic resource demands of IoT devices effectively11,12. In this work, we plan to enhance the scalability and
efficiency of edge computing environments by adjusting the resource allocation of the network based on real-time data traffic
and application demands. We design a framework for IoT-enabled Software-Defined Edge Networks (SDENs) that ensures
optimal performance to address the challenges of delay-aware resource orchestration.

For SDEN networks, the SDN controller‡ has two types of application programming interfaces (APIs) for three-tier ar-
chitecture— northbound and southbound APIs. We consider the OpenFlow protocol to be a southbound interface between
Open vSwitches and the Ryu SDN controller. We consider REST API to be a northbound interface between the Ryu SDN

Abbreviations: SDEN, Software-Defined Edge Networks; IoT, Internet of Things; SDN, Software-Defined Networks.
‡ https://opennetworking.org/software-defined-standards/
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controller and applications. Open-source Apache 2.0§ has licensed Open vSwitches as a high-quality multilayered switch for
network orchestration. The Ryu controller is also actively developed for research activities like SDN OpenFlow rules placement
management in its ternary content addressable memory (TCAM) compared to other SDN controllers like Pox.

Motivating Scenario: An extensive network of IoT devices is deployed to observe traffic flow, aiming to optimize channel
delay and alleviate congestion13,14. For example, during a major public event such as the Olympics, a vast array of 6G-enabled
IoT sensors and cameras can be set up throughout the city to provide real-time data on traffic conditions. This paper presents a
novel approach where edge networks dynamically allocate resources in real-time, significantly reducing latency. Our method
effectively manages data surges during large-scale events or emergencies, ensuring uninterrupted connectivity and efficient
traffic management. The rapid response capabilities of 6G technology allow for seamless adjustments to traffic signals and
rerouting, preventing bottlenecks and enhancing overall traffic flow.

F I G U R E 1 Schematic architecture of IoT-enable SD-Edge networks

In this paper, we introduce Delay-Aware Dynamic Resource Orchestration for IoT-Enabled SDEN, named D-RESIN, a novel
framework to orchestrate resources in SDENs, focusing on minimizing computation delays. As shown in Figure 1, functions
FlowStats() and PortStats() are used for the statistics collection of data at the Access tier and Edge tier, respectively. Similarly,
MeterStats() is used for bandwidth establishment between IoT devices to Open vSwitches and Open vSwitches to Edge nodes. We
execute the D-RESIN algorithms at access and edge tiers to dynamically adjust the network’s resource allocation based on real-
time data traffic and application demands. D-RESIN addresses the latency issues inherent in IoT deployments and significantly
enhances the scalability and efficiency of edge computing environments. The contributions of this article are as follows:

1. We present D-RESIN, a dynamic resource allocation scheme for delay-sensitive IoT applications in the SDEN network.
2. We use an evolutionary game theoretic approach for resource allocation in IoT-enabled SDEN. The proposed scheme

ensures optimal processing delay between IoT devices, Open vSwitches, and Edge nodes— are programmed by the Ryu
SDN controller.

3. We evaluate the existence of evolutionary equilibrium for D-RESIN in access and edge tiers.
4. We implemented our proposed schemes using the Mininet emulation environment. Our approach significantly reduces delay

compared to existing schemes and achieves superior quality of service (QoS) for delay-sensitive applications.

§ https://www.apache.org/
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2 RELATED WORK

2.1 Consistency and Delay challenges in SDN

Software-defined network (SDN) maintains the consistency for distributed control plane architecture as features are no longer
limited to what the vendor provides. In this section, we explore strategies and solutions proposed in recent literature to address
the inherent trade-offs between real-time network performance and the consistency required for reliable SDN operations. For the
purpose mentioned above, Mondal et al.15 designed a FlowMan scheme for managing data flows in the presence of elephant
and mice flows (Heterogeneous environment). Using the bisection method, the authors used the bounded knapsack approach
to associate data flows from IoT devices to SDN switches and ensured optimal network delay and throughput. Another work
by Zhang and Zhu16 proposed an SDN-based framework integrating network function virtualization (NFV) with WiFi and
device-to-device (D2D) offloading to enhance statistical QoS for multimedia services in 5G. Balasubramanian et al.14 presented
an SDN-based architecture, named TSNu, aimed at enhancing the performance of time-sensitive industrial IoT networks. The
framework is grounded in the IEEE Time Sensitive Networking (TSN) standards, particularly leveraging the IEEE 802.1Qbv
and IEEE 802.1Qcc standards for improving transmission time-slot allocations, congestion mitigation, and network stability.
Mondal et al.17 proposed an analytical model named OPUS, alongside a specific queuing scheme, to theoretically determine
the minimal buffer size requirements of an OpenFlow switch. Extensive simulations demonstrated that an optimized buffer
size can significantly enhance packet handling rates while maintaining acceptable packet waiting times. Saha et al.18 proposed
a traffic-aware Quality of Service (QoS) routing scheme within a Software-Defined IoT network framework. It specifically
addressed delay-sensitive and loss-sensitive routing strategies for incoming packets from IoT devices.

T A B L E 1 Comparison of Existing Delay Sensitive Scheme for IoT Network

Existing Work for Delay Sensitive Scheme Software-Defined Edge Network Features
Consistency Dynamic Configuration Edge Computing Three Tiers Delay

Balasubramanian et al. 14 ✓ ✗ ✗ ✗ ✓

Mondal et al. 15 ✓ ✓ ✗ ✗ ✓

Mondal et al. 17 ✓ ✓ ✗ ✗ ✓

Xavier et al. 19 ✗ ✓ ✓ ✗ ✓

Jain et al. 20 ✗ ✓ ✓ ✓ ✗

2.2 Dynamic and Three-Tier Architecture for Edge Network

The edge computing environment provides a decentralized approach to resource allocation and data processing at the network’s
periphery/edge. Here, we review recent advancements in dynamic resource allocation methods and integrate a three-tier
architecture—consisting of cloud, edge, and end devices—to optimize data processing and latency for SDN-enabling technology.
For the same, Xavier et al.19 addressed the challenge of managing computing resources in cloud, edge, and IoT environments to
meet the latency and energy efficiency demands of time-sensitive applications. The proposed algorithm is evaluated against
non-collaborative and collaborative offloading approaches for edge node utilization. Agrawal et al.21 proposed T-RESIN, an
evolutionary game-based scheme that optimizes quality of service and throughput by managing resources at both local and
edge tiers effectively in the SDEN network. However, it acknowledged limitations in handling delay-sensitive tasks. In another
work, Jain et al.20 presented a metaheuristic approach with a blockchain-based resource allocation technique (MWBA-RAT) for
Cybertwin-driven 6G on the Internet of Everything (IoE) environment, addressing the challenges posed by increasing mobile
Internet traffic and service demands. The proposed technique utilizes a quasi-oppositional search and rescue optimization
(QO-SRO) algorithm for enhancing the network’s ability to effectively monitor, manage, and share limited spectrum resources.
Liyanage et al.22 explored the integration of MEC in 5G networks to enhance IoT applications. The study addressed the
challenges and future directions for realizing a cohesive MEC-IoT ecosystem in 5G infrastructures. Manogaran et al.23 presented
a novel resource allocation method with optimal fog node placement in IoT-Fog-Cloud architecture, aiming to minimize service
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T A B L E 2 List of Symbols

Symbol Description

N Set of IoT devices/things
S Set of SDN switches
E Set of Edge nodes
Bs Bandwidth associated with each switch s ∈ S
Fn Set of flows generated by each IoT device n ∈ N
Rmax

s Maximum number of flow rules in TCAM of switch
s ∈ S

V(s) Volume of data associated with each switch s ∈ S
Pdavg

s (f , n, s) Average processing delay of each SDN switch s ∈ S for
any flow f

µs Processing rate for all SDN switch
V(e) Volume of data associated with each edge node e ∈ E
Cuse(e) Computational power used by an edge node e ∈ E
Pdavg

e (f , s, e) Average processing delay of each edge node e ∈ E for
any flow f

µe Processing rate for every edge node
Ee

use Total energy consumption of each edge node e ∈ E
Ee

res Residual energy of each edge node e ∈ E
xs(·) Population share of each switch s ∈ S
Us(·) Utility function for each switch s ∈ S
ẋs(·) Replicator dynamics for SDN Switches
ye(·) Population share of each edge node e ∈ E
We(·) Utility function for each edge node e ∈ E
ẏe(·) Replicator dynamics for edge nodes
α,β Evolutionary control factor

delays and resource exploitation. Sami et al.24 introduced IScaler, a deep reinforcement learning-based solution for intelligent
and proactive resource scaling and service placement in Mobile Edge Computing (MEC) environments.

2.3 Synthesis

In the existing literature, a significant number of researchers have introduced flow association schemes tailored for delay-sensitive
applications within SDN frameworks. However, these methodologies proved impractical for dynamic resource orchestration in
edge computing contexts. We present a comparative analysis of the existing delay-sensitive scheme based on SDEN features in
Table 1. Hence, we present a three-tier architecture—comprising IoT devices, SDN switches, and Edge Nodes in this work that
incorporate all the SDEN features.

3 SYSTEM MODEL

We consider an IoT-enabled SD-edge network infrastructure. It has only one SDN controller in the control plane and multiple
switches in the data plane. The computation of data generated from IoT devices/things occurs at edge nodes. Data packets/flows
from IoT devices to edge nodes go through switches via access points. We consider N , S, and E as a set of IoT devices, SDN
switches, and edge nodes, respectively. Bandwidth associated with each switch s ∈ S is represented as Bs such that total
bandwidth B distributed among all the switches is as follows:

B =
∑
s∈S

Bs (1)

Each IoT device n ∈ N generates Fn set of flows. Each flow f n
i ∈ Fn starts and ends its transmission from the IoT device n ∈ N

at ts(f n
i ) and te(f n

i ), respectively, where i ∈ (Z+ ∩ [0, Fn]) and te(f n
i ) > ts(f n

i ). Flows are dynamic and can be processed at any SDN
switch. Rmax

s denotes the maximum number of flow rules that switch s ∈ S can install in its ternary content addressable memory
(TCAM). Fs represents the number of flow rules associated with each switch s ∈ S that satisfies the constraint Fs ≤ Rmax

s .
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The processing delay¶ of any flow depends on queue discipline and volume of the data associated with a particular flow. For
queue discipline, we consider first-come-first-serve, where flows from the queue are selected for servicing based on their arrival.
The processing rate µs represents how much volume of data can be processed per unit of time at switch s, and it is constant and
does not depend on network parameters. The volume of data associated with each SDN switch s ∈ S is represented in Equation
(2). Definition 1 shows switch processing delay for active flow rules Fs, which eventually helps in determining the average
processing delay of associated flows represented by Equation (4).

V(s) =
∑

f∈
⋃
n

Fn

af ,n,sVf ≤ Bs (2)

where af ,n,s is defined as follows:

af ,n,s =
{

1, if flow f of n ∈ N associated to a switch s
0, otherwise

(3)

Definition 1. We define stat.duration_sec parameter of AggregateStats() function of the Open vSwitches s ∈ S to capture the
overall processing delay for Fs set of flow rules that stay active at any time instant t in its TCAM memory.

Pdavg
s (f , n, s) =

V(s)
µs

∑
f∈

⋃
n

Fn

af ,n,s
(4)

We consider that flow f s
j ∈ Fs is transmitted from the associated SDN switch towards the edge node for resource allocation

when it completes its processing at the switch s ∈ S where j ∈ (Z+ ∩ [0, Fs]). Each edge node e ∈ E has resource constraints
in the form of computation Ce and memory Me for processing the flows received from IoT devices. The volume of data and
computational power used by an edge node e ∈ E for processing the flows are represented in Equations (5) and (6).

V(e) =
∑

f∈
⋃
s

Fs

bf ,s,eVf ≤ Me (5)

Cuse(e) =
∑

f∈
⋃
s

Fs

bf ,s,eCf ≤ Ce (6)

where bf ,s,e is defined as follows:

bf ,s,e =
{

1, if flow f of s ∈ S associated to edge node e
0, otherwise

(7)

Definition 2. We define stat.duration_sec parameter of PortStats() function to capture the overall processing delay for Fe set of
flow rules that are associated with the edge nodes e ∈ E for resource allocation (memory and computation).

The average processing delay of an edge node e ∈ E is presented in Equation (8) where µe is the processing rate for every
edge node.

Pdavg
e (f , s, e) =

V(e)
µeCuse(e)

∑
f∈

⋃
s

Fs

bf ,s,e
(8)

Total energy consumption Ee
use for computing and storing any flow associated with an edge node e is represented in Equation

(9). At a particular time instant t, residual energy Ee
res of edge node e is written as follows:

Ee
use =

∑
f∈

⋃
s

Fs

bf ,s,eE(f , s, e) ≤ Ee (9)

¶ We have not considered channel delay (transmission and propagation delay).
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Ee
res = Ee –

∑
f∈

⋃
s

Fs

bf ,s,eE(f , s, e) (10)

Here, Ee denotes the total energy of each node e. Each edge node is constrained by its residual energy for the association of
incoming flows. Table 2 summarizes the main symbols and their descriptions, which are frequently used throughout the paper.

4 D-RESIN: THE PROPOSED DELAY-AWARE RESOURCE ORCHESTRATION SCHEME

We use the evolutionary game theoretic approach25 to model the interaction among IoT devices and SDN switches and SDN
switches to edge nodes. D-RESIN continuously monitors network conditions and adjusts data flow between IoT devices, Open
vSwitches, and Edge nodes based on real-time demands. The framework distributes workloads to minimize congestion and
ensure faster processing at access and edge tiers.

4.1 Justification for Using Evolutionary Game

We observe that it requires a binary variable af ,n,s in Equation (4) for minimizing the overall processing delay between IoT
devices and SDN switches. Similarly, for SDN switches to the edge node, it requires a binary variable bf ,s,e in Equations (8), (9),
and (10) for minimizing the delay. So the problem mentioned above is a multiple binary integer programming problem26. It
can be mapped to the variant of the 0-1 knapsack problem26,27, a well-known NP-complete problem. Traditional brute-force
or conventional optimization approaches are impractical for large-scale IoT deployments due to their exponential complexity.
These methods can not efficiently handle the real-time resource allocation challenges posed by fluctuating IoT device demands
and network traffic. To address this issue, we use evolutionary game theoretic approach to provide a computationally feasible
solution with polynomial-time complexity while enabling the system to adapt dynamically according to network conditions.
The evolutionary game becomes a method for exploring and optimizing the delay of the 0-1 knapsack problem, which in turn
represents the optimized solution for the original binary integer programming problem.

4.2 Game Formulation

We aim to minimize the processing delay Pdavg
s (f , n, s) of any flow from IoT devices to switches and the processing delay

Pdavg
e (f , s, e) of any flow from SDN switches to edge nodes, which is represented in Equations (4) and (8), respectively. We

consider each IoT end-device n ∈ N to act as a player and select the SDN switch to forward its data flows from the IoT end user
to the Edge node with the help of the SDN controller. The population share xs(·) of each switch s ∈ S is represented in Equation
(11), which is a function of average processing delay and flows associated with the switch s ∈ S . Similarly, the population share
ye(·) of edge nodes e ∈ E is represented in Equation (12).

xs(·) =

∑
f∈Fs,∀n

af ,n,sPdavg
s (f , n, s)∑

f∈
⋃
s

Fs,∀n
af ,n,sPdavg

s (f , n, s)
(11)

ye(·) =

∑
f∈Fe,∀s

bf ,s,ePdavg
e (f , s, e)∑

f∈
⋃
e

Fe,∀s
bf ,s,ePdavg

e (f , s, e)
(12)

Utility Function of SDN Switches and Edge Nodes

For delay-sensitive applications, we need to minimize the population shares xs(·) and ye(·) of SDN switches and Edge nodes,
respectively. Hence, the utility function of SDN switches Us(·) is considered a negative payoff of SDN switches. This means that
switches with lower processing delays and fewer flow rules will have higher utility or payoff values, while switches with higher
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processing delays and more flow counts will have lower utility values. We define the utility function Us(·) for each switch and
the average payoff U(·) of the population for SDN switches as follows:

Us(·) = xs(·)
(

1 –
Fs

Rmax
s

)
(13)

U(·) =
∑
s∈S

xs(·)Us(·) (14)

Processing delay and consumed energy of each Edge node define the negative fitness or payoff for the Edge nodes. A lower
fitness or payoff value indicates a better outcome for edge nodes. The utility function We(·) for each edge node and the average
payoff W(·) of the population for edge nodes are represented as follows.

We(·) = ye(·)
(

1 –
Ee

use

Ee

)
(15)

W(·) =
∑
e∈E

ye(·)We(·) (16)

Hence, the objective functions of each switch s ∈ S and edge node e ∈ E are as follows:

argxs
min Us(·) (17)

argye
min We(·) (18)

Replicator Dynamics

Replicator dynamics is used to model the evolution of strategies in a population of Edge nodes and SDN switches to optimize
network performance. D-RESIN dynamically adjusts the population shares of SDN switches and edge nodes via replicator
dynamics, which balances the load and minimizes processing delays even under high traffic. Replicator dynamics for SDN
switches ẋs(·) and edge nodes ẏe(·) are defined as follows:

ẋs(·) = αxs(·)
(
Us(·) – U(·)

)
(19)

ẏe(·) = βye(·)
(
We(·) – W(·)

)
(20)

where α > 0 and β > 0 are evolutionary control factors.

4.3 Existence of Evolutionary Equilibrium for D-RESIN Scheme

Theorem 1. For a given set of flow rules Fs and the average processing delay Pdavg
s (f , n, s) of a switch, there exists an

evolutionary equilibrium for SDEN network switches at the Access tier.

Proof. We aim to minimize Pdavg
s (f , n, s), which ensures optimal data traffic distribution among SDN switches based on

processing delay. To identify the existence of evolutionary equilibrium, the replicator dynamics equation for switches should be
as follows:

ẋs(·) = αxs(·)
(
Us(·) – U(·)

)
= 0 (21)

Here, the population share of each switch s ∈ S is xs(·) ≥ 0, and the evolutionary control factor α is a positive constant, i.e.
α > 0. Therefore, Equation (21) is represented as follows:

Us(·) – U(·) = 0 (22)

By expanding the utility and average utility function of switches in Equation (22), we get:
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(xs)2 – xs +

∑
s′∈S/{s}

(xs′ )2
(

1 – Fs′
Rmax

s′

)
(

1 – Fs
Rmax

s

) = 0 (23)

In order to find the evolutionary equilibrium, we first identify the coefficients of the quadratic Equation (23). By solving using
a quadratic formula, we yield optimal population share x∗s for each switch s ∈ S as follows:

x∗s =
1±
√

1 – 4ψ
2

(24)

where ψ =
[ ∑

s′∈S/{s}
(xs′ )2

(
1–

Fs′
Rmax

s′

)
(

1– Fs
Rmax

s

) ]
.

Theorem 2. For a given set of flow rules Fe associated with edge nodes, there exists an evolutionary equilibrium at the edge tier
for the average processing delay Pdavg

e (f , s, e).

Proof. At evolutionary equilibrium, replicator dynamics reach zero at the edge tier. Hence, Equation (20) is written as follows:

ẏe(·) = βye(·)
(
We(·) – W(·)

)
= 0 (25)

Similarly, for edge nodes, we consider the population share is ye(·) ≥ 0, and the evolutionary control factor is β > 0. Hence,
we get:

We(·) – W(·) = 0 (26)

By placing the payoff and average utility values of edge nodes in the above Equation (26), we get:

(ye)2 – ye +

∑
e′∈E /{e}

(ye′ )2
(

1 – Ee′
use

Ee′

)
(

1 – Ee
use

Ee

) = 0 (27)

At evolutionary equilibrium, we yield optimal population share y∗e for each edge node e ∈ E as follows:

y∗e =
1±
√

1 – 4κ
2

(28)

where κ =
[ ∑

e′∈E/{e}
(ye′ )2

(
1–

Ee′
use

Ee′

)
(

1–
Ee

use
Ee

) ]

4.4 Proposed Algorithms

For our proposed SDEN network architecture, we have designed two D-RESIN algorithms. As shown in the workflow illustrated
in Figure 2, the decision point (access tier) ensures — access and edge tiers executing Algorithms 1 and 2, respectively, with
the help of the Ryu controller. The Knapsack algorithm identifies the association among IoT devices, SDN switches, and Edge
computing nodes. To optimize the processing delay, each switch and edge node need to strategize xs(·) and ye(·), respectively, to
reach evolutionary equilibrium. We set the evolutionary control factor α = 0.01 at the access tier and β = 0.1 at the edge tier.
We terminate the execution of both algorithms when replicator dynamics are ẋs(·) ̸≈ 0 and ẏe(·) ̸≈ 0 (≤ 10–6 practically). At
evolutionary equilibrium, we evaluate all the SDEN network parameters.

4.5 Complexity Analysis

The main part of the Algorithm 1 involves a do-while loop, from lines 4-16, which continues until an evolutionary stable state
ω is reached. Within the outer loop, line 5 takes constant time O(1). For lines 7-9, each line evaluates an equation that takes
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F I G U R E 2 Workflow diagram of D-RESIN

Algorithm 1 D-RESIN for Access Tier
INPUTS:
1: Network and SDN switch parameters: N ,S, Fs,µs, V(s), Rmax

s ,α
OUTPUTS:
1: Optimize population share and utility value vector for SDN switches: x∗, U∗

PROCEDURE:
1: ω ← 0
2: Distribute flows 0 ≤ i ≤ fn, where n ∈ N, randomly across switches s ∈ S.
3: do
4: ω ← ω + 1
5: for Each s ∈ S do
6: Evaluate Pdavg

s (f , n, s) using Equation (4)
7: Determine population share xs(·) as per Equation (11)
8: Evaluate utility value Us(·) according to Equation (13)
9: end for
10: Evaluate average utility value U(·) using Equation (14)
11: for Each s ∈ S do
12: Evaluate replicator dynamic ẋs(·) using Equation (19)
13: Update population share for the next iteration as: xs(·)← xs(·) + ẋs(·)
14: end for
15: while (ẋs(·) ̸≈ 0)
16: Get evolutionary equilibrium at iteration ω

17: Finalize population share as: x∗s ← xs(·)
18: Evaluate final utility value U∗

s using Equation (13) at evolutionary iteration ω

19: return x∗, U∗;
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Algorithm 2 D-RESIN for Edge Tier
INPUTS:
1: Network and Edge Nodes parameters: N ,S,µe, Cuse(e), V(e), Ee,β
OUTPUTS:
1: Optimize population share and utility value vector for Edge nodes: y∗, W∗

PROCEDURE:
1: ϕ← 0
2: Distribute flows 0 ≤ i ≤ fs, where s ∈ S, randomly across edge nodes e ∈ E for

computational resources.
3: doϕ← ϕ + 1
4: for Each e ∈ E do
5: Evaluate Pdavg

e (f , s, e) using Equation (8)
6: Evaluate Ee

use using Equation (9)
7: Determine population share ye(·) using Equation (12)
8: Evaluate utility value We(·) using Equation (15)
9: end for
10: Evaluate average utility value W(·) using Equation (16)
11: for Each e ∈ E do
12: Evaluate replicator dynamic ẏe(·) using Equation (20)
13: Update population share for the next iteration as follows: ye(·)← ye(·) + ẏe(·)
14: end for
15: while (ẏe(·) ̸≈ 0)
16: Get evolutionary equilibrium at iteration ϕ

17: Finalize population share as: y∗e ← ye(·)
18: Evaluate final utility value W∗

e using Equation (15) at evolutionary iteration ϕ

19: return y∗, W∗;

constant time O(1); thus, the entire block from lines 6-10 takes O(|S |) time complexity for all switches. Evaluating an average
utility for switches in line 11 takes O(|S |) time complexity. Evaluation and updating of the population share are assumed O(1) per
switch; thus, the entire block from lines 12-15 takes O(|S |) time complexity for all switches. Hence, the overall time complexity
of the Algorithm 1 is O(ω|S |). Similarly, the overall time complexity of the Algorithm 2 O(ϕ|E |) for all the edge nodes E , where
ϕ is an evolutionary stable state for Algorithm 2.

5 PERFORMANCE ANALYSIS

We consider Mininet# the most suitable network emulation tool for our proposed SDEN architecture. Mininet provides a realistic
virtual environment for custom topology and an SDN controller with OpenFlow compatibility. In the subsequent section, we
discuss experimental setup, performance metrics, and results for our proposed D-RESIN algorithms in detail.

5.1 Experimental Setup

The proposed SDEN network architecture is experimentally set up according to Table 3. Table 3 provides detailed information
on the hardware, memory type, Mininet emulator, SDN switches, and SDN controller, along with their respective versions. To
evaluate the performance of the proposed D-RESIN algorithm, we designed a multi-switch custom-based typology with varying
Open vSwitches∥, IoT devices, and Edge nodes as depicted in Table 4. The network topology has varying numbers of IoT devices

# https://mininet.org/
∥ https://www.openvswitch.org/
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(50, 100, 200), Open vSwitches (2, 5, 10), and edge nodes (10, 20, 30) to analyze performance under different network scales.
This Mininet topology is controlled by the single Ryu SDN controller∗∗. The detailed emulation parameters are shown in Table 4.

In this work, we consider the following parameters for simulation:

1. For the resource orchestration at the edge node, we consider an initial energy of 20 joules21 for each edge node. The edge
node consumes 50 nj/bit28 for incoming data traffic for computation.

2. The processing rate is considered 0.35 flows per second at both the access and edge tiers.
3. Ethernet is considered for networking standard; hence, we have taken 1518 Bytes for frame size.
4. The evolutionary control factors are set as α = 0.01 at the access tier and β = 0.1 at the edge tier.

T A B L E 3 Experimental Setup

Hardware Intel® Core™ i7-9700 CPU @3.00GHz × 8
Operating System Ubuntu 20.04.6 LTS
RAM 24 GB DDR4
Disk Space 1.0 TB
Network Emulator Mininet (Version 2.31b1)
SDN Controller Ryu Controller (Version ryu 4.34)
SDN Switch Open vSwitch (Version ovs-vsctl 2.13.8)
Network Interface Standard Ethernet
Programming Language Python3 (Version 3.8.10)
Benchmarks T-RESIN, FlowMan, RandomFlow

T A B L E 4 Simulation Parameter
Parameter Value
Number of Switches in Mininet Topology 2, 5, 10
Number of Edge Nodes in Mininet Topology 10, 20, 30
Number of IoT Devices in Mininet Topology 50, 100, 200
Initial Energy of Each Edge Node 20 Joule 21

Network Energy Consumption 50 nJ/bit 28

Ethernet Frame Size 1518 Byte 29

Processing Rate (µs, µe) 0.35 flows per second
Evolutionary Control Factor α = 0.01,β = 0.1

5.2 Benchmarks

We assess D-RESIN Algorithm 1 by comparing it with competing schemes — T-RESIN, FlowMan, and RandomFlow schemes.
Additionally, D-RESIN Algorithm 2 is evaluated against T-RESIN and RandomFlow schemes. In RandomFlow, the data traffic
is randomized at both access and edge tiers, leading to unpredictable outcomes in network throughput, computational delay, and
energy consumption within the SDENs network. Alternatively, FlowMan15 strategically placed flow rules to establish a trade-off
between throughput and delay in two-tier SDN architecture. FlowMan is not specifically tailored for SDEN networks; it does not
address resource allocation at the edge tier, which is a critical component for optimizing performance in these environments. On
the other hand, In T-RESIN, Agrawal et al.21 have optimally allocated resources to achieve high throughput and data flows,
contributing to a sustainable SDEN network. However, T-RESIN is unsuitable for meeting the SDEN network’s delay-sensitive
requirements.

∗∗ https://ryu-sdn.org/
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5.3 Performance Metrics

• Average processing delay at switch: It is calculated as the ratio of the total volume of data and total processing time of all the
flows associated with the particular switch. It depends on the flow’s processing rate as well.

• Per-Switch Flow: Per-Switch Flow is calculated as the number of flow rules associated with TCAM memory for each switch.
• Per-Switch Throughput: Per-switch throughput is calculated as the average amount of data processed for each SDN switch

individually. It also depends on the flow association of each switch in the SDEN.
• Average processing delay at edge node: The average processing delay at an edge refers to the time spent processing the data

flows after arrival. This metric is crucial for assessing the performance and efficiency of SDEN.
• Average energy consumption at edge node: Each edge node serves the data traffic generated from IoT devices. Average

energy consumption is the ratio of total energy consumed in the SDEN network and the number of edge nodes.
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F I G U R E 3 Average processing delay at switch
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F I G U R E 4 Per-switch flow

 0

 0.25

 0.5

 0.75

 1

50 100 200

(b) # Open vSwitches = 5

Number of IoT Devices

 0

 0.25

 0.5

 0.75

 1

50 100 200

(c) # Open vSwitches = 10

Number of IoT Devices

 0

 0.25

 0.5

 0.75

 1

50 100 200

(a) # Open vSwitches = 2

P
er

-S
w

it
ch

 T
h

ro
u

g
h

p
u

t 
(N

o
rm

al
iz

ed
)

Number of IoT Devices

 D-RESIN  T-RESIN  FlowMan RandomFlow

F I G U R E 5 Per-switch throughput
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F I G U R E 6 Average processing delay at edge node
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F I G U R E 7 Average energy consumption at edge node

5.4 Result and Discussion

This section presents the yield results from emulating Algorithm 1 at the Access tier and Algorithm 2 at the Edge tier within the
proposed SDEN architecture. We evaluated the performance of our scheme under various topological configurations, including
different numbers of Open vSwitches (2, 5, 10), IoT devices (50, 100, 200), and Edge Nodes (10, 20, 30), and compared these
results to an existing competing scheme. The delay reduction percentages vary across different scenarios based on factors such as
network topology, data traffic distribution, and resource allocation strategies. It also highlights the impact of evolutionary game
theory-based dynamic resource orchestration in optimizing network performance. For each performance metric, we conducted
20 iterations per topology and calculated the variance of these results at the 95% confidence intervals. The values in the result
sections are normalized and scaled to a standard range, likely between 0 and 1, for easier comparison across different scenarios.

From Figure 3, we observe that the average processing delay reduces as the number of switches increases for the D-RESIN
topology since data traffic is distributed among switches based on optimized processing delay. Using D-RESIN, the average
processing delay at the access tier decreases by 52.43-88.82%, 32.71-87.91%, and 25.50-94.76% than using the existing
schemes— T-RESIN, FlowMan, and RandomFlow, respectively. However, T-RESIN does not consider the delay parameter for
the mathematical modeling of SDEN architecture at all. FlowMan also focuses on data management, specifically addressing
scenarios of very high or very low data traffic, and in RandomFlow, data traffic is very random among switches. Figure 4 shows
D-RESIN performance in handling the flows per switch as the number of IoT devices increases. Compared to the existing
scheme, D-RESIN associates the data flows with SDN switches, ensuring that every flow should be processed optimally. Figure
5 provides insights into the D-RESIN switch throughput performance, crucial for assessing its capability to manage traffic as the
number of connected devices grows for delay-sensitive applications.

On the other hand, from Figure 6, we observe that using D-RESIN, the average processing delay at the edge tier decreases
by 35.44-85.10%, 55.41-84.89% than using the existing schemes— T-RESIN and RandomFlow, respectively. This is because
variation in the processing delay incurred at the edge nodes appears random for the T-RESIN scheme, and the data association
is random for the RandomFlow scheme at the edge tier. However, Figure 7 depicts the efficiency of D-RESIN at the edge tier
regarding energy consumption as the network configuration scales with an increasing number of Open vSwitches. As the number
of switches and edge nodes increases, D-RESIN effectively distributes data traffic and optimizes resource allocation to reduce
average processing delay at both the access and edge tiers. The D-RESIN framework demonstrates improved scalability even in
larger and more complex network environments. Hence, we conclude that D-RESIN ensures a deduction in average processing
delay at access and edge tier for the proposed SDEN architecture.
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6 CONCLUSION

In this paper, we proposed a novel framework, named D-RESIN, that addresses the challenges of dynamic resource orchestration
in SDEN, ensuring high QoS for delay-sensitive applications. We leveraged the evolutionary game theoretic approach to ensure
optimal processing delays between IoT devices, Open vSwitches, and edge nodes managed by the Ryu SDN controller. We
demonstrated the existence of evolutionary equilibrium for D-RESIN at both access and edge tiers by proof. Our implementation
and evaluation using the Mininet emulation environment showed that D-RESIN significantly reduces computation delay at both
access and edge tiers to enhance the scalability and efficiency of SDEN. D-RESIN optimizes resource allocation in various
IoT scenarios, such as smart traffic management, industrial IoT, and real-time healthcare monitoring, by dynamically adjusting
network resources using an evolutionary game-theoretic approach.

This work can be extended by incorporating energy consumption for computation and ensuring energy-efficient resource
allocation for SDEN. We plan to extend D-RESIN to incorporate priority-based application management for the IoT application
based on their urgency and resource requirements. We also plan to integrate edge-cloud computing platforms to leverage the
computational power and storage capabilities of cloud resources as well in the presence of mobile nodes. As a future enhancement,
the management system can be improved to handle high device mobility and intermittent connectivity by integrating intelligent
handover mechanisms and predictive mobility models. Leveraging AI-driven traffic forecasting and adaptive resource allocation
can ensure seamless connectivity and reduce disruptions for SDEN. This will enhance the network’s resilience and efficiency in
dynamic IoT environments.
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