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Abstract. Traffic congestion and low vehicle occupancy rates pose sig-
nificant challenges in urban areas, highlighting the need for efficient,
shared transportation systems. Hence, in this work, we introduce an
Edge-Enabled Vehicle-as-a-Service scheme, named E-VaaS, designed to
improve traffic flow, reduce travel times, and enhance user satisfaction
in intelligent transportation networks. By combining the Gale-Shapley
stable matching algorithm with edge computing, the proposed E-VaaS
system effectively schedules and matches riders to vehicles based on met-
rics that include travel time, distance, and cost. With the help of edge
computing, E-VaaS enables low-latency processing, ensuring that ride-
matching decisions are made swiftly and improving system responsive-
ness and user experience. Experimental results validate the effectiveness
of the model, showing improved vehicle occupancy, reduced travel times
and costs, and a balanced distribution of shared vehicles across the trans-
portation network. This research advances the development of stable,
scalable, and efficient ride-sharing solutions for urban environments.

Keywords: Edge networks · Ride-Sharing · Stable matching · Smart
transportation · Game Theory

1 Introduction

In modern urban environments, the challenges of traffic congestion and inef-
ficient vehicle usage are becoming increasingly critical. With growing urban
populations, the traditional model of private vehicle ownership has led to sub-
stantial under-utilization of transportation resources, where individual vehicles
frequently operate with low occupancy rates. This contributes to environmental
issues and economic inefficiencies, as congested roads result in wasted time and
higher fuel consumption. For example, according to the 2021 TomTom Traffic
Index [2], cities such as Istanbul, Moscow, and Kyiv, suffer from severe traffic
congestion, leading to hours of delay for commuters annually. Addressing these
challenges requires a shift from individual vehicle ownership toward shared trans-
portation solutions that optimize vehicle occupancy and improve traffic flow.

We argue that ride-sharing can be one of the promising solutions to these
issues by encouraging individuals with similar destinations or routes to share a
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single vehicle. Various digital platforms have facilitated this practice, but tradi-
tional ride-sharing models often rely on centralized cloud-based systems, which
can struggle to process requests efficiently during peak times. This also con-
tributes heavily to a high carbon footprint. These systems typically use basic
matching algorithms that focus on geographic proximity rather than a more
holistic measure of user satisfaction, which includes factors like travel time, cost,
and route efficiency. Consequently, they may fall short of providing the quick
response and optimal matches that urban travelers expect.

To address these limitations, we introduce an Edge-Enabled Vehicle-as-a-
Service (E-VaaS) system that combines the Gale-Shapley stable matching algo-
rithm with edge computing to deliver a more efficient and user-centered ride-
sharing experience. This novel E-VaaS framework is designed to improve traffic
efficiency by maximizing vehicle occupancy, minimizing travel costs, and opti-
mizing travel time, thereby enhancing traveler satisfaction. By integrating edge
computing, the E-VaaS system reduces latency by processing data closer to end-
users at edge nodes rather than solely relying on centralized cloud resources.
This distributed architecture enables faster response times, allowing the system
to match riders and vehicles in real time, essential in dynamic and high-demand
urban contexts. In summary, our primary contributions are as follows:

1. We introduce a novel E-VaaS system that combines the Gale-Shapley stable
matching algorithm with edge computing to achieve stable, real-time ride-
sharing.

2. We present a satisfaction-driven matching framework that considers travel
time and cost, enabling personalized matches that improve vehicle occupancy
and user satisfaction.

3. We propose an edge-based ride request transmission mechanism, which re-
duces latency and ensures timely, responsive service for riders and drivers
alike.

4. We evaluated and validated experimentally the effectiveness of the model,
improvement of vehicle occupancy, reduced travel times and costs, and a
balanced distribution of shared vehicles across the transportation network.

2 Related Works

There are a few existing works that focus on the concept of ride-sharing. Addi-
tionally, the integration of edge computing into public vehicle (PV) systems has
garnered significant attention in recent years, aiming to enhance traffic efficiency,
optimize vehicle occupancy ratios, and reduce overall congestion. Zhang et al. [6]
presented a comprehensive Edge Computing Based Public Vehicle (ECPV) sys-
tem designed to address these challenges by leveraging edge devices for real-time
ride-sharing and vehicle scheduling. Their approach emphasizes the reduction
of decision-making latency through distributed computing, thereby improving
the quality of experience (QoE) for travelers. Previous research on the matching
problem in ride-sharing systems has primarily addressed optimization challenges
in route planning, dynamic pricing, and cost-sharing mechanisms. For instance,
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Guan et al. [4] examined ride-sharing trade-offs from a multi-objective perspec-
tive, aiming to maximize trip-sharing willingness and minimize total vehicle us-
age costs. Other studies have focused on dynamic pricing schemes, highlighting
how fluctuating demand can result in pricing imbalances, leading to inefficiencies
in matching and incentivizing drivers. Notably, Xie et al. [5] proposed a cost-
sharing approach utilizing a double auction mechanism to maximize cost savings
for drivers and passengers within specific timing constraints. Troyan et al. [1]
proposed another approach that contrasts with standard commercial models by
focusing on stable matching. Using the Gale–Shapley algorithm, adapted to ac-
commodate different driver and passenger capacities, the authors demonstrate
that the algorithm always reaches a stable matching. The experimental simula-
tions of their model reinforce its effectiveness by validating stable matches across
multiple randomly generated test cases, emphasizing the model’s stability and
scalability.

The proposed E-VaaS builds on the iterated version of the Gale-Shapley
algorithm by introducing refined utility functions tailored to the cost-time trade-
offs in ride-sharing systems, enhancing matching efficiency. By leveraging edge
computing, we also reduce latency in real-time matching processes, addressing
a critical gap in existing systems where rapid response times are essential for
optimal user experience and system performance. This unique approach aims
to deliver a robust, low-latency matching solution that improves stability and
operational speed.

3 System Model

We consider a road network abstracted as a directed multi-graph G = (N,E),
where N and E represent the set of nodes corresponding to intersection points
and the set of directed edges representing road segments between these nodes,
respectively. Each user u, traveling along a path in G, follows a sequence

P0k = n0
e01−−→ n1

e12−−→ · · · ejk−−→ nk

where ni ∈ N , ejk ∈ E, and 0 ≤ i, j, k ≤ k. ejk represents the directed edge

connecting two nodes nj and nk. A sub-path Pij = ni · · ·
eij−−→ · · ·nj is considered

a proper segment of a path P0k if {eij} ⊆ {e0k}. A weighting function ω : E →
R+ is defined to represent the cost, e.g., travel time and distance, associated
with each edge of the graph. The total cost of traversing the path Pij is given
by

ω(Pij) =
∑

ω(eij)

In E-VaaS, we consider the roadside units (RSUs) as edge devices that ensure
operational efficiency. Vehicles exchange real-time route and scheduling informa-
tion with the closest RSUs over wireless networks. The cloud data center commu-
nicates with these edge devices via wired connections for global data aggregation
and analysis. This distributed architecture allows edge devices to process and
respond to ride requests while reducing latency significantly.
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Each node n ∈ N in the road network hosts an edge device or RSU, ensuring
comprehensive coverage. These edge devices facilitate real-time communication
with vehicles and handle localized data processing, thereby alleviating the load
on central cloud servers and improving the scalability and responsiveness of the
system.

4 E-VaaS: The Proposed Edge-Enabled Vehicle-as-a-
Service System

4.1 Justification of Using Gale-Shapley Stable Matching Algorithm

A central component of the proposed E-VaaS system is adapting the Gale-
Shapley stable matching algorithm [3]. It is traditionally used to solve matching
problems with participants having individual preferences. Hence, it is partic-
ularly effective in situations requiring stable matches, ensuring that no rider-
vehicle pair would prefer a different matching over the one assigned. In ride-
sharing, the Gale-Shapley algorithm is adapted to consider the preferences of
both riders and vehicles based on a utility function that incorporates travel
time, distance, and cost. Each rider and vehicle has preferences calculated using
a weighted sum of these factors, where time and cost often have the highest
weights. The goal is to create stable matches that align with the preferences of
both parties, reducing the likelihood of mid-trip cancellations or disruptions.

4.2 Mathematical Model Formulation

The utility function in E-VaaS aims to balance travel time and cost. For instance,
travelers with more flexibility in timing may prefer routes with lower costs, while
those on tight schedules might prioritize shorter travel times. This preference-
based approach allows the system to generate personalized matches that increase
user satisfaction. Additionally, using the Gale-Shapley algorithm enables the
system to dynamically adjust matches as new requests are received, which is
particularly beneficial during peak times when demand is high. By optimizing
for both time and cost, the E-VaaS model increases the likelihood of achieving
stable matches and incentivizes more users to participate in the ride-sharing
service, as their preferences are accounted for.

To further enhance efficiency, our E-VaaS system leverages edge computing
to handle the processing and decision-making closer to the users, thus reducing
the dependency on a central server. In traditional cloud-based ride-sharing sys-
tems, requests are sent to a centralized server, which may result in significant
latency due to network delays and heavy computational loads. Edge computing
mitigates these issues by distributing the computational tasks across multiple
edge nodes near end-users. This proximity allows edge nodes to quickly process
ride requests and make matching decisions locally, thus enabling real-time re-
sponse and reducing the load on cloud resources. With edge nodes handling the
bulk of the processing, latency is minimized, which is critical for a responsive
ride-sharing system that operates efficiently under fluctuating demand.
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Dynamic Zone Management with Edge Devices A specific edge device
manages each geographic area or zone within the city. The edge device serves
as a local computational hub, responsible for handling the matching requests,
processing waiting lists, and monitoring vehicles within its designated zone.

Vehicles entering or leaving a zone inform the respective edge device of their
status. When a vehicle (driver) enters a zone, it sends an entry message to the
edge device, signaling that it is now available for matching within that zone.
Similarly, when a vehicle exits, it sends a departure message informing the edge
device, which removes it from the list of available drivers in that zone.

Matching Process and Edge Computation The matching algorithm is run
locally on each edge device, which handles requests from passengers and drivers
within its specific zone. Each edge device represents the system as a bipartite
graph, where nodes represent passengers and drivers in the zone, and edges
signify potential matches with weights based on preference and utility levels.

4.3 Handling the Waiting List with Edge Devices

In cases where passengers are not matched within a few iterations, they are
placed on a waiting list within the edge device’s queue. Suppose a passenger
remains on the waiting list without a match after a set number of iterations.
The waiting list data is forwarded to nearby edge devices to explore broader
matching options. This forwarding mechanism leverages the proximity of other
edge devices, which may have nearby drivers that could pick up the unmatched
passenger. In a hierarchical or peer-to-peer configuration, the closest edge devices
can include the waiting passenger in their following matching process.

Inter-Zone Coordination via Edge Devices Edge devices maintain lightweight
communication with neighboring edge devices, allowing passengers on the wait-
ing list to have a greater chance of finding a driver even if their zone lacks
available vehicles. When a new driver enters a zone and registers with the local
edge device, the system checks if any passengers are still on the waiting list, lo-
cally or from nearby zones. Inter-zone coordination can help resolve cases where
passengers in low-density areas might have experienced delays.

5 Theoretical Framework for E-VaaS

In our study, we introduce an enhanced utility function to assess and opti-
mize ride-sharing matches between drivers and passengers. The utility function
is a core concept in economic and mathematical optimization, representing a
measure of preference or satisfaction. Here, our utility function quantifies the
collective benefit or satisfaction that a potential ride-sharing arrangement brings
to both drivers and passengers. The main aim of this utility function is to en-
sure that each match not only reduces costs and travel times for both parties
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but also respects individual rationality, where both driver and passenger ben-
efit positively from the shared ride. This optimization is further supported by
theoretical constraints and efficiency principles, ensuring the proposed matching
process is practical and effective.

5.1 Utility Function Definition

The utility function U(d, p) captures the net benefit of a shared ride between
a driver d and a passenger p by considering cost savings and time efficiencies.
Formally, this function is represented as follows:

U(d, p) = wc · [Cd(p) + Cp(d)] + wt · [Td(p) + Tp(d)]

where wc and wt are weight coefficients for cost and time, constrained by wc +
wt = 1 and wc, wt ∈ [0, 1]; Cd(p) and Cp(d) represent the cost-related functions
for the driver and passenger, respectively; and Td(p) and Tp(d) represent the
time-related functions for the driver and passenger, respectively.

By balancing cost and time through these weighted terms, the function allows
us to quantify the overall utility of a ride-sharing match. This model aims
to maximize U(d, p) for pairs of drivers and passengers to determine optimal,
mutually beneficial matches.

5.2 Cost Savings Analysis

Cost savings are crucial for drivers and passengers considering ride-sharing, as
both are motivated by potential reductions in travel expenses.

Driver’s Cost Function Cd(p) For a driver, the cost function Cd(p) represents
the difference between the revenue received from the passenger Rd(p) and any
additional operational costs incurred due to the shared ride, denoted Od(p).
Mathematically:

Cd(p) = Rd(p)−Od(p)

where Rd(p) = β ·dp ·r, with β as a fare share coefficient that defines the propor-
tion of revenue received by the driver, dp as the trip distance of the passenger,
and r as the base fare rate; and Od(p) = (ddet · cr) + (tdet · ct), where ddet is
the detour distance incurred to accommodate the passenger, cr is the cost per
distance unit, and tdet =

ddet

v is the detour time at average velocity v, multiplied
by a time-based cost ct.

Passenger’s Cost Function Cp(d) For a passenger, the cost function Cp(d)
quantifies the savings achieved by sharing the ride instead of bearing the full
cost of a solo trip. It is represented as:

Cp(d) = Cs − Cr
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where Cs = dp · r is the cost of a solo trip; and Cr = dp · r · (1 − δ) represents
the reduced cost in the shared trip, with δ as a discount factor.

Thus, the passenger’s utility from cost savings stems from the difference
between the solo trip cost and the discounted shared trip cost.

5.3 Latency Analysis

In addition to cost, both drivers and passengers seek time efficiencies in ride-
sharing. Time functions capture the impact of shared travel on each party’s total
journey duration.

Driver’s Time Function Td(p) The driver’s time-related benefit is calculated
based on any additional time incurred from the detour and waiting time for the
passenger:

Td(p) = −(tdet + twait)

where twait represents the waiting time for the passenger. A negative value in-
dicates that these elements reduce the driver’s utility.

Passenger’s Time Function Tp(d) The passenger’s time savings function
compares the time for a solo trip with that of a shared ride:

Tp(d) = Ts − Tr

where Ts =
dp

v represents the solo travel time. Tr =
dp+ddet

v + twait is the shared
trip time, factoring in the detour and waiting time. This function captures how
much travel time the passenger saves (or loses) by sharing a ride with the driver.

5.4 Theoretical Analysis

To ensure the effectiveness of the utility-based ride-sharing model, we establish
two primary theorems [3]: Individual Rationality and Route Efficiency.

Theorem 1: Individual Rationality A ride-sharing match between driver d
and passenger p is deemed rational if both benefit positively from the shared
ride. Formally, this condition is satisfied if:

U(d, p) > 0 ⇐⇒ Ud(p) > 0 ∧ Up(d) > 0

Proof:

1. Forward Direction (⇒): If U(d, p) > 0, then both the driver’s and passen-
ger’s components of utility must also be positive.

2. Reverse Direction (⇐): If both driver and passenger utilities are positive,
then the overall utility U(d, p) is also positive.
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Theorem 2: Route Efficiency Route efficiency ensures minimal detours, keep-
ing the shared route convenient and cost-effective. This is characterized by the
detour ratio ddet

dp
, which should be bounded by a constant ϵ:

∃ ϵ > 0 :
ddet
dp

≤ ϵ ⇐⇒ match is route-efficient

Proof:

1. Forward Direction (⇒): Given ddet

dp
≤ ϵ, the total time remains within

acceptable bounds, ensuring route efficiency.
2. Reverse Direction (⇐): If the match is route-efficient, then ddet

dp
≤ ϵ must

hold to maintain bounded travel times.

Corollary 1: Cost-Time Trade-off Balancing cost and time effectively within
the utility function is crucial for maximizing matches. The optimal weights w∗

c

and w∗
t for cost and time, respectively, can be derived as:

w∗
c =

T

C + T
, w∗

t =
C

C + T

where C = Cd(p)+Cp(d) and T = Td(p)+Tp(d) are the combined cost and time
components, respectively. This yields the highest possible utility for the given
weight constraints.

This utility-based model provides a structured, theoretically sound frame-
work for maximizing mutual benefit in ride-sharing arrangements. By balanc-
ing cost savings and time efficiencies, and applying constraints for rationality
and route efficiency, this model guides an optimal ride-sharing matching pro-
cess, effectively implemented through the Gale-Shapley algorithm. This approach
improves user satisfaction and enhances system efficiency, encouraging broader
adoption of shared mobility solutions.

5.5 Algorithm

This work proposes a new algorithm to address the stable matching problem
in ride-sharing systems, adapting the well-known Gale-Shapley algorithm to a
unique context. The proposed algorithm iterates over the Gale-Shapley method,
modifying the traditional constraints on matching. Here, unlike in the original
algorithm, the number of drivers and passengers need not be equal, and the
algorithm can accommodate incomplete or non-strict preference lists, which more
realistically reflect real-world ride-sharing environments.

To set up the matching framework, we define the users in the system as either
passengers (type p) or drivers (type d). Each driver d has a limited number of
seats available in their vehicle, denoted by s, and each passenger p seeks to
occupy a seat. A total seat count, Nseats, represents all available seats in the
ride-sharing system, and the number of passengers np should not exceed this
capacity.
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The algorithm introduces a ”waiting list” for unmatched passengers, ensuring
that any unmatched passenger is given a final option to join this list. If a pas-
senger p is on the waiting list, it implies they could not find a driver, and in the
model, this waiting list serves as a fallback with minimal priority for matching
purposes.

To implement this matching process, the proposed algorithm represents the
system as a bipartite graph, where nodes represent users (passengers and drivers),
and edges represent possible pairings. Each edge between a passenger pi and a
driver dj has a weight, which reflects the utility or preference level that pi has
for dj , and vice versa. This setup allows us to represent the relationships be-
tween passengers and drivers as directed edges with weights for each direction,
capturing each user’s utility.

In every iteration of the modified Gale-Shapley process, a matching is con-
ducted between passengers and drivers based on these preferences and available
seats. If a stable matching is not yet achieved, the algorithm iterates further, up-
dating the bipartite graph and reducing the set of edges by eliminating unstable
or lower-priority pairings.

The algorithm continues to iterate until no further pairings improve sta-
bility, ensuring a convergent, stable matching for the ride-sharing system. By
allowing for a flexible number of drivers and passengers and the option for pas-
sengers to wait if they are unmatched, this approach adapts Gale-Shapley to the
complexities of real-world ride-sharing, prioritizing efficient seat allocation and
maximizing utility for users.

6 Performance Evaluation

In this study, we designed a 3×3 grid comprising nine equal squares, with edges
representing roads, as shown in Fig. 1. Each square has an edge device as a
local computational hub for efficient communication and processing. Once a ve-
hicle enters a zone, it notifies the edge device of its presence and the number
of available seats, enabling real-time coordination for ride-sharing requests. All
passengers and drivers are positioned on the edges, facilitating quick interac-
tions with the corresponding edge device. This setup allows a comprehensive
comparison of solo trips versus ride-sharing, with ride-sharing shown to be more
cost-effective due to optimized shared expenses.

For the analysis, we examined two scenarios — one with a fixed number of
passengers and varying drivers, and the other with a fixed number of drivers and
varying passengers, as presented in Fig. 2. Results highlight that ride-sharing sig-
nificantly reduces costs compared to solo trips by distributing expenses across
multiple passengers. Additionally, if a zone lacks an available driver for a ride
request, the edge device forwards the request to adjacent zones anticlockwise un-
til a match is found. This dynamic, grid-based edge-device coordination ensures
that passengers experience minimal delays even when no drivers are initially in
their starting zone.
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(a) (b)

Fig. 1. Simulation Setup

We visualize the comparative performance of solo and shared trips for both
scenarios. The findings underscore the efficiency and cost benefits of the ride-
sharing model, primarily as the grid-based system supports rapid matching and
minimizes redundant detours by systematically forwarding unmet requests across
the grid. With zone-specific edge devices, this grid design demonstrates a scalable
and responsive approach to optimizing urban ride-sharing networks.

We take a case of six passengers and two drivers. The current coordinates of
passengers and drivers are given in Fig. 1(b). We evaluate the performance of
ride-sharing in terms of cost and time efficiency. The distances of all passengers
from the driver are calculated as shown in the figure. For solo riding drivers, D1
and D2 will pick up the nearest passenger and drop them at their location. The
initial distances of drivers from passengers are given in Fig. 2(a). The one who
drops first will then look on for the nearest passengers near them, and so on. The
total time and cost for passengers are 43 seconds and Rs. 159(Considering unit
distance on grid costs Rs. 3). In ride sharing, drivers broadcast their location
and seat availability to their nearest edge device. Similarly, the ride request of
passengers is also taken on the nearest edge device governing that area. If any
driver or passenger is located equidistant from two edge devices, the requests
are taken to the edge devices anticlockwise.

For example, in the given case, P1 is on (6,4), hence its request is forwarded
to edge device 6. If any edge device has a request from a passenger, but there is no
driver in the area, then the request is forwarded to the next edge device until the
area covered by some edge device has a driver in it. For example, the ride request
of P5 is taken on E1, but as there is no driver there, it is forwarded to E2, which
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 2. Evaluation Scenarios

has a driver in that area. After this consideration, D1 received the requests from
P1, P2, and P3 as shown in Fig. 2(g). Based on utility functions and applying
the Gale-Shapley algorithm (considering cost coefficients as 0.7 and time as 0.3,
discount factor as 0.5) on this, D1 will take P3 and P2 with it; similarly, D2 will
take P4 and P5. There will be cost reduction for passengers as there are some
common subroutes. Fig. 2(h) shows the time at which each passenger is dropped
and their effective cost. Finally, after calculations, the cumulative time and cost
for passengers are 33 secs and Rs. 107.

7 Conclusion

This study introduces a novel, utility-optimized ride-sharing framework that
leverages edge computing for dynamic, responsive matching between drivers
and passengers. By integrating enhanced utility functions into a modified Gale-
Shapley algorithm, the proposed system adapts traditional stable matching prin-
ciples to better address the unique challenges of real-world ride-sharing, such as
variable passenger-driver ratios and non-strict preferences. Adding edge devices
in a distributed grid configuration improves matching efficiency and latency,
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enabling faster, localized decision-making and inter-zone coordination. In some
cases, we demonstrate that ride-sharing using this edge-computing approach
significantly reduces both costs and travel time when compared to solo trips.
This system improves users’ cost-effectiveness and offers a scalable solution that
minimizes resource strain on central cloud servers. As urban mobility demands
continue to evolve, the proposed model provides a practical, efficient solution
that can enhance the adoption of shared mobility services, benefiting both indi-
vidual users and the broader transport infrastructure.
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