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Energy-Efficient Bandwidth Orchestration for
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Abstract—The advent of the sixth-generation (6G) wireless
networks promises to revolutionize the telecommunications land-
scape by offering significantly high data rates, low latency, and
enhanced reliability compared to the predecessors, i.e., 5G and
4G. In the existing literature, the problem of heterogeneous band-
width management using Software-Defined Networking (SDN) is
not explored to leverage the 6G technology in the Industrial Inter-
net of Things (IIoT). In this work, we propose a novel framework,
FALCON, to dynamically manage bandwidth in softwarized 6G
networks while focusing on the sustainability of IIoT applications.
We simulate the effectiveness of FALCON framework using
the Mininet simulator. In FALCON, the Ryu SDN controller
orchestrates bandwidth dynamically across SDN-capable Open
vSwitches. The proposed dynamic FALCON scheme improves the
average packet drop by 26.32% over data, VoIP, and video traffic
than the existing schemes. Through extensive simulation, we
observe that FALCON reduces packet loss, enhances throughput,
and reduces energy consumption at edge nodes for heterogeneous
data traffic in comparison to the existing schemes on the IIoT
ecosystem.

Index Terms—6G Network, SDN, IIoT, Meter Table, Band-
width Allocation, Mininet Emulator.

I. INTRODUCTION

The rapidly evolving telecommunications landscape has wit-
nessed significant advancements with the introduction of fifth-
generation (5G) networks [1]–[3]. However, as the demand
for higher data rates, ultra-low latency, and improved network
reliability continues to grow, researchers are making an effort
toward the development of sixth-generation (6G) wireless
networks. 6G promises to offer unprecedented capabilities,
while surpassing its predecessors [4], [5]. We envision that
the advancement of 6G networks will also have a high impact
on the Industrial Internet of Things (IIoT). The presence
of IIoT in Industry 5.0 highlights the need for energy-
efficient solutions, where intelligent resource allocation aligns
energy consumption with operational demands [6], [7]. It also
emerges as a pivotal aspect of future network design, align-
ing with global sustainability goals and addressing climate
change concerns. Though several schemes are proposed for
IIoT applications in the existing literature, there is a need
to address the challenges posed by heterogeneous bandwidth
management and the integration of emerging Industry 5.0 tech-
nologies, such as network bandwidth optimization, Software-
Defined Networking (SDN), and energy-efficient mechanisms,
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to achieve sustainable and high-performance 6G networks [8]–
[11].

For heterogeneous traffic in dynamic IIoT environments,
the existing work often results in either underutilized link
capacity or congestion, leading to increased retransmission
energy. This necessitates a dynamic SDN-enabled orchestra-
tion framework that adapts bandwidth provisioning in real
time while minimizing energy consumption in softwarized
6G networks. [12]–[14]. To address these challenges, this
work introduces a novel architecture, named FALCON, that
aims to manage bandwidth efficiently while addressing energy
efficiency and sustainability concerns of IIoT. By leveraging
the advantages of SDN and bandwidth slicing, FALCON en-
sures an adaptive, resilient, and user-centric wireless network
infrastructure. A key feature of FALCON is that it dynamically
allocates available bandwidth in real time while significantly
reducing packet loss, enhancing throughput, and optimizing
energy consumption. We design the practical feasibility of
this architecture through simulation using mininet and the
Ryu SDN controller. We use the iPerf tool to generate UDP
traffic and measure the throughput improvements achieved by
dynamic bandwidth allocation. Figure 1 depicts the integration
of edge nodes and bandwidth slicing for ensuring optimal
Quality of Service (QoS). It highlights three network slices,
where each meter table is used for managing different traffic
types — video, Voice over Internet Protocol (VoIP), and data
originating from IIoT devices. The Ryu SDN Controller at
the edge oversees the traffic distribution, ensuring optimal
resource utilization across the slices.

Motivation Scenario: An industrial smart factory deploying
IIoT devices connected through a softwarized 6G network.
The factory generates diverse types of traffic, including real-
time video surveillance, VoIP communications, and periodic
data from sensors. In such a heterogeneous environment, static
bandwidth allocation often results in wasted capacity and
traffic bottlenecks for critical real-time services. To ensure
reliability and energy efficiency, bandwidth must be dynam-
ically allocated based on traffic priority. Leveraging SDN
with programmable meter tables allows high-priority traffic
to receive preferential bandwidth while limiting low-priority
flows. This scenario highlights the practical need for a dynamic
and energy-aware bandwidth management framework.

In this work, we use a meter table to enforce rate-limiting
policies. The SDN controller defines distinct flow categories
by setting up different meter table rules and applying specific
actions to ensure optimal resource utilization. For instance,
high-priority flows associated with real-time IIoT services,
such as VoIP and video streaming, are assigned a high band-
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Fig. 1: Schematic Architecture for Traffic Management in
IIoT-Enabled Softwarized 6G Networks

width to ensure smooth service delivery. Moreover, the meter
tables restrict low-priority traffic to avoid resource starvation
and ensure fairness across the IIoT network. The proposed
framework, FALCON, improves the network performance
metrics, such as increased network throughput, improved
energy efficiency, and reduced packet loss. The summarized
contributions of this work are as follows:

1) We introduce a novel architecture, named FALCON, that
integrates SDN, network slicing, and a heuristic-based
bandwidth allocation strategy to address the unique de-
mands of IIoT in softwarized 6G networks.

2) We use meter tables for the dynamic bandwidth distribu-
tion at runtime. FALCON aims to reduce packet loss and
improve overall network throughput for IIoT applications.
Additionally, the framework enhances energy efficiency
by minimizing packet retransmissions to ensure sustain-
able IIoT operations.

3) The FALCON framework employs network bandwidth
slicing to manage different traffic types, such as video,
VoIP, and IIoT data, within distinct slices. Each slice
is governed by a meter table that applies rate-limiting
policies to ensure optimal resource allocation for different
traffic flows.

4) We evaluate the practical feasibility of FALCON by
implementing it using the mininet simulator, Open
vSwitches, and the Ryu SDN controller. The performance
of FALCON is benchmarked against the existing schemes
for diverse IIoT traffic scenarios.

II. RELATED WORK

In the existing literature, a few researchers have studied the
challenges of efficient bandwidth management and resource
allocation in next-generation wireless networks. For instance,
Jhaveri et al. [15] proposed an SDN-based framework called
SDN-RMbw for fault resilience and dynamic bandwidth man-
agement in Industrial Cyber-Physical Systems (ICPS). The

proposed approach relied on bandwidth contracts to man-
age network resources and handled runtime changes or link
failures through a resilience manager. In another work, Son
and Buyya [16] presented a virtual machine (VM) allocation
algorithm (PAVA) and a bandwidth allocation (BWA) tech-
nique ensure that high-priority applications receive sufficient
computing and network resources in cloud environments. The
system improved resource utilization in multi-tenant SDN-
enabled cloud data centers. In the context of 5G edge net-
works, Bera and Mehta [17] addressed the challenges of man-
aging network slices in 5G edge networks. The authors pro-
posed a heuristic approach, RESET, to optimize the allocation
of resources, including bandwidth, computing, and storage,
while maximizing operator rewards and minimizing the costly
redistribution of active slices. Beyond 5G networks, Cao et
al. [13] formulated energy-cost models for vehicle-assisted
B5G networks to support both NFV and network slicing. The
authors aimed to minimize total energy cost while maintaining
high slice acceptance by prioritizing active nodes and jointly
allocating both wireless and wired resources. Sasan et al. [14]
introduced a joint optimization framework for slicing, routing,
and in-network computing to improve energy efficiency in 6G
networks. Another work by Zhang and Zhu [18] proposed a
scalable SDN-based framework integrating network function
virtualization (NFV) with WiFi and device-to-device (D2D)
offloading. This architecture enhances statistical QoS provi-
sioning for heterogeneous multimedia services in 5G networks.
For the Software-Defined Edge Networks (SDENs), Agrawal
et al. [19] used an evolutionary game-theoretic approach to
optimize resource allocation across multiple tiers, aiming to
enhance system throughput while managing the heterogeneous
data flow of Internet of Everything (IoE) devices. Building
upon their earlier work, D-RESIN [20] enhanced the SDEN
framework by dynamically reducing processing delays at the
access and edge tiers, leading to a significant performance
improvements for delay-sensitive IoT applications. To address
the challenges of Mobile Edge Computing (MEC) environ-
ments, Sami et al. [21] proposed IScaler, a deep reinforcement
learning-based solution, for intelligent resource scaling and
service placement in 6G networks. In another work, Li et al.
[22] proposed a framework to efficiently manage resources
across multiple scenarios in 6G networks using a Time-
Expanded Graph (TEG). Energy efficiency has been a key fo-
cus in IIoT. For that purpose, Manogaran et al. [23] presented a
deep learning-based concurrent resource allocation method for
6G Network-in-Box (NIB) architecture. The authors leveraged
attuned slicing and deep neural networks to optimize resource
allocation and improve service response for UAV-assisted
communications. In another work, Lyu et al. [24] proposed
a 5G-enabled framework for energy-efficient transmission and
state estimation in IIoT systems. The framework used a hierar-
chical approach that integrates adaptive resource allocation and
state estimation strategies to enhance transmission reliability
and accuracy under constrained energy and communication
resources.

Synthesis: The evolution of wireless communication tech-
nologies towards 6G networks highlights the critical need for
advanced resource management techniques that meet stringent
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TABLE I: Comparison of Existing Resource Orchestration Schemes along with the Proposed Schemes, S-FALCON and D-
FALCON, for IIoT in 5G/6G Networks.

Existing Work for Resource
Orchestration Scheme

SDN-Enabled 5G/6G Networks Features

Dynamic Configuration Heterogeneous Traffic Edge Computing
(Energy Efficient)

Beyond 5G and 6G network

Jhaveri et al. [15] ✓ ✗ ✗ ✗
Bera and Mehta [17] ✓ ✗ ✗ ✓
Agrawal et al. [19], [20] ✓ ✗ ✓ ✗
Sami et al. [21] ✓ ✗ ✓ ✓
Manogaran et al. [23] ✓ ✗ ✗ ✓
S-FALCON ✗ ✓ ✗ ✓
D-FALCON ✓ ✓ ✓ ✓

requirements for energy efficiency, ultra-low latency, and high
reliability. Existing works in this field have made notable con-
tributions, including SDN-enabled dynamic bandwidth man-
agement, priority-based resource allocation, and network slic-
ing techniques. Frameworks such as SDN-RMbw [15], RESET
[17], and D-RESIN [20] demonstrated progress in fault toler-
ance, contract-driven bandwidth allocation, and delay-aware
orchestration. However, these approaches primarily relied on
static traffic patterns, neglected real-time feedback control,
and lacked support for fine-grained bandwidth control mech-
anisms. Similarly, recent AI-based orchestration frameworks,
viz., [21], [23] required high computational overhead and lack
real-time reallocation logic suitable for IIoT environments.
Overall, these limitations hinder the holistic integration of real-
time bandwidth adaptation and energy efficiency, particularly
in softwarized and heterogeneous 6G infrastructures. Table
I presents a comparative overview of the existing resource
orchestration schemes and the proposed schemes, S-FALCON
and D- FALCON in SDN-enabled 5G/6G networks. Hence,
in this work, we aim to propose a novel architecture that
will enable advancing the state of the art by combining SDN
and network slicing to achieve dynamic, real-time resource
allocation tailored for IIoT applications.

III. SYSTEM MODEL

We consider that N , S, and E represent a set of IIoT
devices, SDN switches, and edge nodes, respectively. Each
IIoT device n P N generates Dn data traffic. The bandwidth
associated with each switch s P S is represented as Bs.
Each switch has a meter table consisting of meter entries
as a rate limiter to enable OpenFlow to implement various
simple QoS operations. The meter table is represented with
meter ID and associated bandwidth for each switch s P S.
Let bi represents the bandwidth requirement for traffic ti,
where i P pZ` X r0, Dnsq associated with meter mj having
a bandwidth bj of Meter Table Mxm for the switch s P S.
Thus, bj represents a fraction of the total switch bandwidth
Bs, such that

ř

j bj ď Bs. This indicates that bj is a local
bandwidth allocation under the global bandwidth constraint
Bs. If incoming traffic ti exceeds the bandwidth bj of the
meter, the overflow traffic is considered dropped traffic. Hence,
the traffic throughput Ti is measured as:

Ti “

"

bi, if bi ď bj
bj , otherwise (1)

Each switch s P S has a ternary content addressable
memory (TCAM) with capacity of maximum flow rules Rmax

s .
We consider that Fs represents the number of flow rules
associated with each switch s P S and needs to satisfy the
constraint —

Fs ď Rmax
s (2)

The energy consumption at an edge node depends on the
amount of data processed, the bandwidth allocation, and any
overheads associated with maintaining QoS (e.g., packet drops,
throughput optimization). Based on the work by Heinzelman
et al. [25], the energy required to transmit a k´bit packet
over a distance d depends on energy consumed per bit by the
transmitter and energy consumed by the transmitter’s amplifier
for distance-based signal propagation. We do not consider
amplifier energy, as the edge nodes and IIoT devices are
within a single hop range of SDN switches. Hence, energy
consumption Ee

use of each edge node e P E is as follows:

Ee
use “ ETx

ÿ

nPN

ÿ

iPr0,Dns

xti,n,eTi (3)

where an edge node e P E processes Ti data transmitted from
the IIoT devices; and ETx denotes the energy cost to transmit
one unit of data traffic. Here, the binary variable xti,n,e is
defined as follows:

xti,n,e “

$

&

%

1, if traffic ti of IIoT devices n P N is
associated with an edge node e

0, otherwise
(4)

Fig. 2: Bandwidth Allocation in an OpenFlow Switch with
Static Meter Table.
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Fig. 3: Bandwidth Allocation in an OpenFlow Switch with
Adaptive Meter Table.

Problem Scenario: Figure 2 illustrates how an OpenFlow
switch employs a meter table for static bandwidth allocation
among hosts (H1, H2, H3). It highlights bandwidth assign-
ments and the resulting traffic classifications, i.e., accepted,
dropped, or considered waste, for hosts (H4, H5, H6). Due
to fixed meter assignments, excess traffic from some hosts
is dropped even when unused bandwidth exists elsewhere,
leading to poor utilization and degraded QoS for critical IIoT
applications. In contrast, Figure 3, the meter table dynamically
adjusts bandwidth among hosts (H1, H2, H3) based on real-
time traffic demands. It shows how bandwidth is reassigned
from MID 1 to MID 2, allowing all traffic to be accepted for
hosts (H4, H5, H6), improving bandwidth utilization. Together,
these figures underscore the transition from static to dynamic
bandwidth management in OpenFlow switches, illustrating the
critical improvements in performance and resource allocation
efficiency achievable through the FALCON architecture.

IV. FALCON: THE PROPOSED ENERGY EFFICIENT
BANDWIDTH ORCHESTRATION FRAMEWORK

In this section, we propose a heuristic-based model for
efficient bandwidth management in a softwarized 6G network,
utilizing two algorithms — S-FALCON for static bandwidth
allocation and D-FALCON for dynamic bandwidth alloca-
tion. The model employs a heuristic approach to address the
complexities of bandwidth allocation in heterogeneous traffic
environments by integrating SDN with network slicing and
meter tables.

A. Justification for using Heuristic Approach

The problem of dynamic bandwidth allocation in soft-
warized 6G IIoT networks is inherently complex due to the
combinatorial nature of flow-switch-edge mapping and multi-
ple constraints on bandwidth and energy consumption. Hence,
this problem can be modeled as a three-layered bipartite graph
[26], where IIoT traffic flows, SDN switches, and edge nodes
form distinct layers. The mapping of flows to switches and
subsequently to edge nodes constitutes a multistage assignment
problem [26], which is an NP-hard problem. Furthermore,
modeling our problem as a three-layered bipartite graph
inherently ensures the absence of odd-length cycles. This is
because IIoT traffic flows, SDN switches, and edge nodes
constitute distinct, non-overlapping vertex sets, as required by

TABLE II: List of Symbols

Symbol Description

N Set of IIoT devices
S Set of SDN switches
E Set of edge nodes
Mxm Meter table of each SDN switch s P S
Bs Bandwidth associated with each switch s P S
Dn Data traffic generated by each IIoT device n P N
Fs Number of flow rules associated with each switch s
Rmax

s Maximum number of flow rules in switch s P S
Pdroppsq Packet drop at each switch s P S
ETx Energy cost to transmit/retransmit data traffic unit
Ee

use Energy consumption of each edge node e P E
Edrop Retransmission energy required for dropped packet
Ee

total Total energy consumption of each edge node e P E
including retransmission energy

α and β Weights for throughput and packet drop in the objec-
tive function, respectively

the definition of a bipartite graph. Traditional optimization
and learning-based methods often result in high computational
overhead and latency; hence, these solutions are impractical
for real-time, resource-constrained IIoT environments. In con-
trast, heuristic approaches provide a lightweight and scalable
solution, with minimal computational effort. The FALCON
framework employs a heuristic strategy to dynamically reallo-
cate bandwidth using programmable SDN meter tables, while
ensuring a trade-off between performance and computational
efficiency.

B. S-FALCON: Static Bandwidth Allocation
S-FALCON is presented in Algorithm 1 and provides a

novel integration of static bandwidth allocation with Open-
Flow meter tables tailored for heterogeneous IIoT traffic in
softwarized 6G networks. It offers analytical insight into
the limitations of fixed provisioning that the existing works
have not addressed, and also contributes by modeling energy
consumption explicitly under static constraints. Moreover, S-
FALCON serves as a necessary baseline to demonstrate the
performance and energy-efficiency gains of the dynamic D-
FALCON algorithm.

C. D-FALCON: Dynamic Bandwidth Allocation
We propose D-FALCON, i.e., Algorithm 2, to allocate band-

width dynamically across IIoT devices, switches, and edge
nodes. This approach ensures adaptive resource allocation and
improved energy efficiency while minimizing packet loss. It
also leverages real-time traffic monitoring to reallocate band-
width resources based on traffic type and demand dynamically.
It ensures that high-priority flows, such as VoIP and video
traffic, receive sufficient bandwidth while maintaining network
stability. Table II summarizes the symbols with their descrip-
tions, which are frequently used throughout the paper. We aim
to maximize the objective function fpysq while ensuring that
an optimal amount of the bandwidth is allocated by meter
table Mxm of each switch s P S. Hence, we define fpysq as
follows:

fpysq “ α
ÿ

sPS

ÿ

nPN

ÿ

iPr0,Dns

yti,n,sTi ´ β
ÿ

sPS
Pdroppsq (5)
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where Pdroppsq refers to the packet drop at each switch s P S.
Here, the parameters α and β serve as weights in the ob-
jective function, balancing the trade-off between maximizing
throughput and minimizing packet drops. The parameters α
and β are positive real values in the range p0, 1q, where α
emphasizes throughput maximization and β prioritizes packet
drop minimization. These parameters depend heavily on the
specific operational context, network requirements, and pri-
ority constraints of individual IIoT applications. Finally, the
binary decision variable yti,n,s is defined as follows:

yti,n,s “

$

&

%

1, if traffic ti of IIoT devices n P N is
transmitted through switch s

0, otherwise.
(6)

For packet drop consideration, there is additional retrans-
mission energy Edrop represented in Equation (7), where ETx
is the energy cost of retransmitting a dropped packet.

Edrop “ ETx

ÿ

sPS
Pdroppsq (7)

The total energy consumption Ee
total at an edge node e P E

is expressed as:

Ee
total “ Ee

use ` Edrop (8)

In FALCON, we aim to minimize the total energy consump-
tion Ee

total of an edge node e P E with respect to the binary
decision variable xti,n,e. This variable indicates that traffic ti
from IIoT device n P N is associated with an edge node e.
Mathematically,

argxti,n,e
minEe

total (9)

while satisfying the following constraints.
Bandwidth Allocation Constraint: The total allocated band-
width for each switch s cannot exceed the available bandwidth
Bs. Mathematically,

ÿ

ti

yti,n,sbi ď Bs, @s P S (10)

Meter Table Fairness Constraint: Each meter Mxm prioritizes
high-traffic flows, such as video and VoIP, while ensuring
fairness for low-priority flows. Hence, we get —

yti,n,sMxm ď
Bs

Fs
, @Mxm P S (11)

Edge Node Energy Constraint: The total energy consumption
at an edge node e P E does not exceed its maximum energy
capacity Ee to prevent energy exhaustion of edge nodes while
optimizing network performance. Mathematically,

Ee
total ď Ee, @e P E (12)

On the other hand, using FALCON, the packet drop
Pdroppsq for traffic flow ti is minimized by dynamically real-
locating unused bandwidth from underutilized meters, where

Pdroppsq “

ř

OMpbi ´ Bsq

Ti
ˆ 100 (13)

Algorithm 1: S-FALCON: Static Bandwidth Alloca-
tion Algorithm

Input: N : IIoT Devices, S: SDN Switches, E : Edge Nodes,
Mxm: Meter Table

Output: Ti: Traffic Throughput, Pdrop: Packet Drop, Ee
total:

Total Energy Consumption
Parameters: bi: Bandwidth requirement for traffic ti, Bs:

Bandwidth of switch s
1 Procedure:
2 for Each switch s P S and edge node e P E do
3 for Each meter m P Mxm do
4 if bi ď bj then
5 Calculate output traffic using Equation (1).
6 Compute energy consumption Ee

use using
Equation (3).

7 Return Ti, Ee
use

8 end if
9 else

10 Calculate output traffic using Equation (1)
and drop the overflow traffic.

11 Compute energy consumption Ee
use and

energy for packet drop Edrop using
Equation (3) and (7), respectively.

12 Return Ti, Pdrop, Edrop, Ee
use

13 end if
14 end for
15 Compute total energy consumption Ee

total of an
edge node using Equation (8)

16 end for
17 return Ti, Pdrop, Ee

total

OM denotes the overloaded meters of meter table Mxm.
Equation (13) defines the packet drop percentage at each
switch s P S based on the amount of traffic exceeding the
bandwidth allocation by overloaded meters. Specifically, it
calculates the overflow traffic (bi ´ Bs) at each overloaded
meter and normalizes this by the total throughput, converting
it into a percentage. Therefore, Equation (13) reflects the
performance for bandwidth allocation using meter tables in
SDN-based IIoT networks. Moreover, bandwidth reallocation
is dynamically adjusted based on real-time traffic demands, as
represented below.

ysptq “ argmax
ys

ˆ

Available bandwidth
Traffic type demand

˙

(14)

D. Complexity Analysis

Let |S|, |E |, and |M| denote the number of SDN switches,
the number of edge nodes, and the average number of meter
entries per switch, respectively. These notations are uniformly
used for the complexity analysis of both algorithms — S-
FALCON and D-FALCON for consistency. The time com-
plexity of Algorithm 1 (S-FALCON) is Op|S||E ||M|q, which
results from the nested iterations over switches, edge nodes,
and their associated meter table entries during static bandwidth
allocation. The time complexity of Algorithm 2 (D-FALCON)
is Op|S||M|`|M|

2
`|S||E |q. This complexity arises because

the algorithm first iterates over all switches and their respective
meter entries to monitor bandwidth utilization, followed by
bandwidth adjustments among overloaded and underutilized
meters, which requires pairwise comparisons between meter
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Algorithm 2: D-FALCON: Dynamic Bandwidth Allo-
cation Algorithm

Input: N : IIoT Devices, S: SDN Switches, E : Edge Nodes,
Mxm: Meter Table

Output: Ti: Optimize Traffic Throughput, Pdrop: Packet
Drop, Ee

total: Total Energy Consumption
Parameters: bi: Bandwidth requirement for traffic ti, Bs:

Bandwidth of switch s
1 Procedure: D-FALCON Dynamic Bandwidth Allocation
2 cbw Ð 0
3 Initialize new meters “ r s

4 for Each switch s P S do
5 for Each meter m P Mxm do
6 if (bi ą bconfig) then
7 new meters Ð m
8 end if
9 Calculate total consumed bandwidth as:

cbw Ð cbw ` bi
10 end for
11 Compute available bw “ Bs ´ cbw
12 end for
13 if new meters is empty then
14 Return 0
15 end if
16 for Each meter m in new meters do
17 Gather the list of meters with free bandwidth
18 Adjust bandwidth allocations for meters with free

capacity
19 end for
20 for Each switch s P S and edge node e P E do
21 Reallocate bandwidth and adjust the meter table

dynamically to optimize throughput and reduce
packet drop.

22 Calculate output traffic using Equation (1).
23 Compute total energy consumption Ee

total using
Equation (8).

24 Return Ti, Pdrop, Ee
total

25 end for
26 Return optimized traffic throughput, reduced packet

drop, and total energy consumption based on the
updated meter table.

27 return Ti, Pdrop, Ee
total

entries. The number of IIoT devices |N | influences the volume
of incoming traffic processed by SDN switches and edge
nodes. Although this impact is implicitly captured through
traffic-related computations and has a limited effect on com-
putational complexity compared to the structural parameters
|S|, |E |, and |M|, which drive bandwidth allocation and meter
table adjustments. It is to be noted that increasing |N | affects
runtime in practical deployments.

V. PERFORMANCE ANALYSIS

A. Experimental Setup

This section details the experimental setup to evaluate the
FALCON architecture for efficient bandwidth management in
a softwarized 6G network. The setup leverages Mininet1 for
network simulation, Ryu2 as the SDN controller, and Open
vSwitches3 are served as the virtual switches to facilitate

1https://mininet.org/
2https://ryu-sdn.org/
3https://www.openvswitch.org/

TABLE III: Experimental Setup

Hardware Intel® Core™ i7-9700 CPU @3.00GHz × 8
Operating System Ubuntu 20.04.6 LTS
RAM 24 GB DDR4
Disk Space 1.0 TB
Network Emulator Mininet (Version 2.31b1)
SDN Controller Ryu Controller (Version ryu 4.34)
SDN Switch Open vSwitch (Version ovs-vsctl 2.13.8)
Network Traffic Generator iPerf tool (Version 2.0.13)
Network Interface Standard Ethernet
Programming Language Python3 (Version 3.8.10)
Benchmarks T-RESIN, S-FALCON

TABLE IV: Simulation Parameter

Parameter Value
Number of IIoT Devices 50
Number of Open vSwitches 5
Number of Edge Nodes 10
Maximum Link Capacity 10 Mbps
Bandwidth for Meter-Table Entry 5 Mbps, 2.5 Mbps, 2.5 Mbps
Initial Energy of each Edge node 20 Joule [19]
Network Energy Consumption 50 nJ/bit [25]
Ethernet frame Size 1518 Byte [27]
Simulation Duration 120 Seconds

communication between hosts and manage flow entries, as
mentioned in Table III. We evaluated the performance of
FALCON architecture for topological configuration, including
50 IIoT devices, 5 Open vSwitches, and 10 edge nodes as
depicted in Table IV. Each host is connected to every switch
using TCLink, configured with a maximum link capacity of
10 Mbps to simulate realistic bandwidth constraints. Traffic
generation is performed using the iPerf4 tool to create UDP
traffic, including data, VoIP, and video, simulating different
traffic types and loads. Each test case runs for 120 seconds to
observe how the system handles traffic flows under realistic
network constraints. We define the QoS parameter as the
allocated bandwidth for each meter-table entry. For simulation,
we consider three-meter entries of the meter table — M1:
5 Mbps, M2: 2.5 Mbps, and M3: 2.5 Mbps as allocated
bandwidth for each switch. Table V outlines the five test cases
(T1-T5) with varying incoming traffic distributions assigned to
each SDN switch’s meter table at different bandwidth levels.

TABLE V: Test cases for Incoming Traffic Associated with
SDN Switch’s Meter Table

Testcases Incoming Traffic (Mbps)
M1 M2 M3

T1 5 5 5
T2 5 1 4
T3 1 7 2
T4 8 1 1
T4 1 1 8

B. Benchmarks

We assess the performance of D-FALCON, i.e., Algorithm
2, and S-FALCON, i.e., Algorithm 1, with the existing scheme
— T-RESIN. For S-FALCON scheme, SDN switch’s meter
tables are static and preinstalled. Hence, S-FALCON employs

4https://software.es.net/iperf/
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(a) Data Traffic (b) VoIP Traffic (c) Video Traffic

Fig. 4: Percentage of Packet Drop for Heterogeneous Network Traffic— Data, VoIP, Video.

(a) Data Traffic (b) VoIP Traffic (c) Video Traffic

Fig. 5: Analysis of Switch Traffic for Heterogeneous Network Traffic— Data, VoIP, Video.

a static bandwidth allocation model where resources are pre-
allocated without real-time adaptation. On the other hand,
we consider T-RESIN as a benchmark proposed by Agrawal
et al. [19] in comparison with D-FALCON scheme. The
authors have optimally allocated the resources to achieve high
throughput and data flows, supporting a sustainable SDEN
network. However, T-RESIN did not use the concept of a meter
table for dynamic bandwidth allocation.

C. Performance Metrics

‚ Packet Drop: It calculates the percentage of packets that
are dropped during transmission in the network. This
metric helps to assess the reliability of the network
and the effectiveness of bandwidth management under
varying load conditions.

‚ Switch Traffic: It is calculated as the total amount of
traffic handled by each Open vSwitch per unit of time.
It provides insights into how traffic is distributed and
processed within the SDN switch.

‚ Network Throughput: It examines the overall throughput
of the network, focusing on how efficiently the network
can handle heterogeneous traffic types. It helps evaluate
network performance and resource allocation using dy-
namic bandwidth allocation.

‚ Energy Consumption at Edge Node: The total energy
consumed at the edge node includes energy required for
transmission and retransmission of data. It is evaluated
based on the amount of data processed and allocated
bandwidth. FALCON framework minimizes the retrans-
mission energy by reducing packet loss and efficient
bandwidth management to maintain network sustainabil-
ity.

D. Result and Discussion

This section presents the performance evaluation of the
proposed FALCON framework based on extensive simulation.
We evaluate key network parameters such as packet drop rate,
switch traffic, overall network throughput, and energy con-
sumption at the edge nodes to demonstrate the effectiveness
of dynamic bandwidth allocation. The proposed D-FALCON
scheme is attributed to its real-time adaptive capability and
dynamic bandwidth management. D-FALCON continuously
monitors bandwidth usage through programmable SDN meter
tables and dynamically reallocates resources from underuti-
lized traffic flows to those experiencing congestion. This
adaptive reallocation directly reduces packet drops, maximizes
throughput, and minimizes retransmission-related energy con-
sumption. Thus, the flexibility offered by real-time, heuristic-
driven adjustments in D-FALCON inherently ensures better
network performance and energy efficiency, particularly under
fluctuating and heterogeneous IIoT traffic conditions.

Figure 4 depicts that S-FALCON experiences significant
variability, with packet drop percentages fluctuating signifi-
cantly across test cases. In contrast, D-FALCON demonstrates
a more stable performance with lower packet drop rates. For
data traffic, S-FALCON shows an average packet drop of
35.98%, while D-FALCON improves this with a substantially
lower average of 11.78%, as shown in Figure 4(a). Similarly,
for VoIP traffic, S-FALCON records an average packet drop
of 35.84%, whereas D-FALCON outperforms with a reduction
to 10.47%, as illustrated in Figure 4(b). Figure 4(c) depicts
packet drop percentages for video traffic, where S-FALCON
has a fluctuating average packet drop of 43.18% in contrast
to D-FALCON with an average packet drop of 13.78%.
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(a) Data Traffic (b) VoIP Traffic (c) Video Traffic

Fig. 6: Overall Network Throughput for Heterogeneous Network Traffic— Data, VoIP, Video.

(a) Data Traffic (b) VoIP Traffic (c) Video Traffic

Fig. 7: Energy Consumption at Edge Nodes for Heterogeneous Network Traffic— Data, VoIP, Video.

The results suggest that D-FALCON outperforms S-FALCON
while reducing the overall packet drop by 26.32% over data,
VoIP, and video traffic.

Switch traffic, as illustrated in Figure 5, demonstrates the
efficiency of D-FALCON over S-FALCON and T-RESIN
for all traffic scenarios. As depicted in Figures 5(a)–5(c),
using D-FALCON, the associated switch traffic improves by
2.44%, 15.06%, and 13.73% compared to S-FALCON for
different traffic — data, VoIP, and video, respectively. For
data traffic, D-FALCON and T-RESIN handle almost the
same switch traffic as shown in Figure 5(a). Figures 5(b) and
5(c) demonstrate that D-FALCON outperforms T-RESIN in
handling switch traffic with 21.07%, and 25% for VoIP and
video traffic scenarios, respectively. In summary, D-FALCON
tends to handle switch traffic across all scenarios, particularly
in resource-intensive cases like video and VoIP, while S-
FALCON and T-RESIN maintain a low switch traffic.

Figure 6(a) analyzes the network throughput for D-
FALCON, S-FALCON, and T-RESIN for data traffic. D-
FALCON increases network throughput by 9.59% and 7.94%
in comparison to S-FALCON and T-RESIN, respectively. Sim-
ilarly, for VoIP traffic, D-FALCON improves network through-
put by 21.61% and 8.36% in comparison to S-FALCON and
T-RESIN, respectively, as depicted in Figure 6(b). Figure 6(c)
also analyzes that D-FALCON achieves higher throughput
in high resource-intensive test cases, and T-RESIN and S-
FALCON perform similarly in most test cases. D-FALCON
improves network throughput by 24.95% and 16.09% in com-
parison to S-FALCON and T-RESIN, respectively, for video
traffic.

As illustrated in Figure 7, D-FALCON demonstrates a
remarkable reduction in energy consumption at edge nodes

across all test cases and traffic types. D-FALCON reduces
energy consumption by 10.71% and 21.5% compared to S-
FALCON and T-RESIN, respectively, for data traffic, as shown
in Figure 7(a). The reduction is even more significant for
VoIP traffic, with 30.62% and 19.37% reductions compared
to S-FALCON and T-RESIN, respectively, as observed in Fig-
ure 7(b). Figure 7(c) depicts the energy consumption reduction
of D-FALCON by 39.82% and 12.24% with respect to S-
FALCON and T-RESIN, respectively.

These findings highlight D-FALCON’s efficacy in dynami-
cally managing network resources within IIoT environments,
particularly in reducing packet drops, efficiently handling
higher traffic loads, and significantly lowering energy con-
sumption at edge nodes. This supports the sustainability goals
of modern telecommunication networks, aligning with the
advancements and high reliability required by next-generation
6G infrastructures.

VI. CONCLUSION

In this paper, we presented FALCON, a network archi-
tecture, that incorporates SDN and network slicing for en-
hanced bandwidth management in softwarized 6G networks,
particularly tailored for IIoT applications. FALCON dynam-
ically optimizes bandwidth allocation to efficiently handle
diverse traffic types, including data, VoIP, and video, that
are critical in IIoT environments. We observed that FALCON
significantly reduces packet loss, increases throughput, and
optimizes energy consumption effectively. Furthermore, the
dynamic allocation strategies of D-FALCON outperform the
static methods employed by S-FALCON. The adaptive FAL-
CON, i.e., D-FALCON, enhances adaptability for fluctuating
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network conditions and sustainability objectives of advanced
6G developments in the IIoT ecosystems.

This work can be extended while focusing on bandwidth
orchestration in IIoT-enabled 6G network environments in the
presence of network link failures and faulty IIoT devices. The
addressed problem can also be revisited by incorporating ma-
chine learning (ML) technologies to refine resource allocation
dynamically based on the availability of the corresponding
network configuration datasets.
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