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2.1. Introduction

Despite the ongoing commercial deployment of the 5G technology, the research

community has already started to explore the potential of future mobile and

wireless communication networks beyond 5G systems. Future 6G networks are

expected to enable a smart, connected, and intelligent digital ecosystem where

numerous stakeholders and network entities will require secure and trusted

communication-computing continuum to ensure the ubiquitous availability of
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novel services to consumers in an efficient way. In order to ensure successful

deployment and acceptance of 6G networks, it is highly important to consider

and address various strict requirements, such as ultra-low latency, security and

privacy, embedded trust, automated operations, network management, big data

management, as well as intelligent data analysis and decision-making, among

many others [Akyildiz et al., 2020].

To ensure the smooth development towards future 6G networks, strong sup-

port is required from various advanced and disruptive communication related

technologies, such as virtualization, Artificial Intelligence (AI), softwarized/pro-

grammable networks, edge and fog computing, quantum computing, and Dis-

tributed Ledger Technologies (DLTs)/Blockchain [Akhtar et al., 2020]. Among

these, Edge Intelligence (EI) is a centric enabler for various novel 6G-based ap-

plications, which combines the capabilities of edge computing and AI to provide

crucial features, such as ultra-low latency, high reliability, high resource and

energy-efficiency, and high level of security and privacy [Letaief et al., 2022].

The integration of EI with 6G networks will enable the efficient use of local

computing, storage, and processing capabilities along with cloud data centers

for optimal placement of data processing, analysis and decision-making. This

is vital for various future 6G-enabled critical Internet of Things (IoT) appli-

cations in different verticals, such as real-time process control in Industry 5.0,

virtual reality use cases in computer-aided surgery or remote vehicle opera-

tion, self-driving vehicles, etc., all requiring highly reliable, efficient, scalable

and secure communication and computing infrastructure for their operations

and processes [Bhat and Alqahtani, 2021], [Khan et al., 2022].

Along with all the above benefits, the integration of edge, AI and 6G net-

works brings wider than before threat landscape for adversaries to launch var-
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ious security and privacy attacks. For example, during the dynamic computa-

tional task offloading in a multi-tier edge-cloud architecture, a malicious entity

can fetch or alter the user’s sensitive information that is transmitted among

various computational nodes [Zhu et al., 2021]. Moreover, when AI algorithms

are either fully or partially running on various distributed edge nodes, several

security and privacy threats will rise. For example, poisoning attack is one of

the most common attacks against Machine Learning (ML) algorithms to alter

or change their training models [Mukherjee et al., 2020]. Furthermore, since 6G

networks combine various other enabling technologies, such as DLT/Blockchain

and quantum computing, there will be a high probability of existing and new

security and privacy attacks [Siriwardhana et al., 2021]. Finally, since the 6G-

EI ecosystem will comprise several entities (users, devices, service providers,

applications, etc.), dynamic and embedded trust management mechanisms will

be required.

To address these challenges and secure the EI for future 6G networks, the

literature has recently pointed out some potential technologies that will en-

hance security and privacy [Adhikari et al., 2022]. For example, ML-based se-

curity and privacy algorithms will play a significant role in providing intelligent

and real-time intrusion detection, prevention, and mitigation mechanisms [Sun

et al., 2020]. Moreover, the addition of various security-enabling technologies

such as DLTs/Blockchain and quantum-resilient cryptography will enhance the

overall security and trust for future 6G network architecture.

The key objective of this research work is to analyze what is still missing

in the current mobile generation in terms of security, privacy and trust chal-

lenges and what kind of novel and advanced technological developments are

required to cope with the new and strict requirements of future massive-scale
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IoT applications and critical infrastructures. This chapter mainly explores the

potential security vulnerabilities in the context of the future EI and 6G net-

works. Section 2.2 provides background details about the fundamentals of edge

computing, the evolution of edge intelligence, and the need for secure EI for

6G. Sections 2.3, 2.4, and 2.5 discuss various potential security, privacy, and

trust threats for 6G EI-enabled systems, respectively. We briefly present the

ongoing and future vision for the security standardization activities in 6G and

Edge-AI in section 2.6 and conclude the chapter in section 2.7.

2.2. Background/Roadmap

2.2.1. Edge Computing and its importance

Cloud computing allows various users to access services or resources from a

remote location via the Internet. Based on the provided level of software and

hardware resources, the cloud services are categorized into three categories

—Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-

as-a-Service (IaaS) [Botta et al., 2016], [Stergiou et al., 2018]. These cloud

services allow users to create applications and use hardware, software, and

operating system in a virtualized environment at a large scale.

IoT is one of the fastest-growing domains of ICT, and IoT devices generate

rapidly growing amounts of data to be handled by the cloud. However, due

to the long distance from IoT data sources and end-users to the cloud, there

are many challenges related to transferring, processing and storing massive

data in the cloud, such as high latency, high burden on networks and high

energy consumption [Botta et al., 2016, Stergiou et al., 2018]. Edge computing
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is envisioned to overcome the aforementioned challenges of cloud computing

for IoT applications by bringing cloud computation capacity closer to data

sources and end-users, as shown in Figure 2.1.

In edge computing, the processing of data generated from different IoT

devices occurs at the edge, i.e., between the cloud and the IoT devices. Edge

computing platform is distributed in nature and provides networking, stor-

age, and computation services for IoT applications and services, [Laroui et al.,

2021, Dizdarevic et al., 2019, Pan and McElhannon, 2018, Tefera et al., 2021].

Edge computing platform addresses the following key issues faced by the cloud

computing platform:

Figure 2.1: Cloud computing to edge computing shifting for IoT applications

1. Performance (latency, throughput): Edge nodes are available in the

access or local network. Therefore, the distance between edge nodes and

IoT devices is less than between the cloud servers and the IoT devices.

Hence, edge computing serves the user requests with less delay, and the

bandwidth is not limited by as many potential bottlenecks.

2. Efficiency (resource, cost and energy-efficiency): Edge computing
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decentralizes the processing of data. Therefore, data coming from IoT

devices can be processed closer to their sources, and consequently, not as

much data needs to be sent over. This reduces energy consumption while

also core network congestion is relieved.

3. Dependability (reliability, security, privacy): In addition to de-

centralized data processing, edge computing also decentralizes decision-

making. This brings resilience against server/data center failures, net-

work failures and congestion, as well as denial of service or other types of

security attacks. Furthermore, edge computing helps limit the propaga-

tion of private data, reducing its probability to be exposed to potentially

hostile parties.

2.2.2. Emergence of Edge Intelligence

To support the decentralized edge computing platform, AI technologies are

envisioned to serve as a support system for fast data processing, i.e., analyzing

and extracting meaningful information/patterns from a large amount of data

near the source. AI-based optimization methods, such as Federated Learning

(FL) and Reinforcement Learning, can help in enhancing the system efficiency

at large. Additionally, the integration of AI to edge supports multiple heteroge-

neous applications in terms of data types, data handling, and offloading while

ensuring a minimum latency. Hence, EI comes into existence by incorporat-

ing AI techniques and models to support the edge computing platform, [Deng

et al., 2020, Zhang et al., 2019]. The edge nodes enabled with AI techniques and

platforms are called intelligent edge nodes. Figure 2.2 represents a schematic

diagram for EI. It is to be highlighted that EI is not only a simple integration
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of edge computing and AI. To understand EI, we need to find answers to the

following fundamental questions.

1. How can AI techniques provide a solution for edge computing challenges?

2. How can edge computing optimize the operation of AI techniques?

Figure 2.2: Schematic Diagram of Edge Intelligence

To answer these questions, researchers have presented multiple architec-

tures, systems, and enabling technologies for EI [Deng et al., 2020, Zhang et al.,

2019, Nain et al., 2022]. For example, [Deng et al., 2020] presented two aspects

of EI, i.e., the first one is “AI for edge” that mainly concentrates on efficiently

utilizing AI-based solutions and technologies to enhance the edge computing

paradigms, e.g., a better, intelligent and more secure solution to data collec-
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tion and computation offloading for mobile environments. The other aspect is

“AI on edge,” which deals with constructing AI models for integrating and

executing AI techniques in the edge computing environment.

The edge computing platform enhances AI applications to work in hetero-

geneous and distributed networks, i.e., shift from cloud to edge network. Due

to the physical limitations of the edge nodes, EI suffers from the following

challenges.

• Constrained resources: Due to having limited computational and stor-

age capacity, executing AI algorithms on edge nodes is challenging in a

distributed edge computing architecture.

• Inconsistency: Cloud computing is capable of supporting multiple plat-

forms for executing AI techniques. Edge nodes have limitations in provi-

sioning these AI-compatible platforms.

To overcome the aforementioned issues, [Zhang et al., 2019] proposed a

framework, named OpenEI. The authors constructed a model using lightweight

packages of deep reinforcement learning algorithms. OpenEI framework aims to

find appropriate AI techniques corresponding to edge environments to remove

the inconsistency. In another work [Zhu et al., 2020] identified the importance of

distributed learning, i.e., FL, for edge nodes. Using FL, the authors addressed

several issues using the amalgamation of AI and edge computing.

2.2.3. Integration of Edge Intelligence and 6G

The future 6G network is expected to bring the next-generation revolution in

the telecommunication sector. The 6G ecosystem will combine a plethora of

various existing as well as novel enabling technologies along with advanced
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sensing and communication technologies that will empower future massive-

scale IoT applications such as Industry 5.0, virtual reality use cases, and au-

tonomous driving. To accomplish the 6G vision, the research community has

already started to drive deep into the various requirements, e.g., ultra-low

latency, reliability, massive connectivity, autonomous and self-adapting net-

works, peak data rate, optimal spectrum usage, and maturity in the relevant

enabling technologies among others [Qadir et al., 2022], [Ray, 2021]. In addi-

tion, various open challenges require suitable solutions such as robust security

and privacy solutions, energy efficient and sustainable solutions, optimized

resource utilization, and implementing AI/ML solutions for future communi-

cation networks [Zhang and Zhu, 2020].

The integration of EI and 6G will enable ubiquitous intelligence at scale,

i.e. convergence of communications, sensing, and localization with decentral-

ized learning and inference at the edge over an end-to-end environment. The

integration is likely to lead to a cognitive network architecture capable of ac-

commodating the requirements of the 6G verticals. It will further facilitate the

design and deployment of the verticals capable of utilizing resources for learning

and inference in the programmable world in real time. EI will enable support

for autonomous computing features, such as self-healing, self-configuration, and

self-optimization in 6G verticals, thus making 6G resilient to unforeseen and

unintended incidents.

2.2.4. The need for secure Edge Intelligence

The 6G ecosystem will be a collective, collaborative platform ecosystem with

a plethora of advanced enabling technologies and multiple stakeholders, such
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as network operators and service providers, that may utilize integrated com-

putation and communication platforms for various services.

The integration of EI with the future 6G will enable massive IoT appli-

cations by offering distributed intelligence, reliable connectivity, and faster

data analysis/decision-making. To make this vision a reality, novel security

solutions are required to protect entire EI-enabled 6G ecosystems for various

applications. Some of the security solutions for such smart ecosystems may

also utilize different existing security technologies and approaches proposed

for 5G systems. For example, Blockchain-based/integrated/empowered secu-

rity mechanisms and frameworks have been widely proposed and developed

for the 5G networks.

2.3. Security Challenges in 6G EI

2.3.1. Computational offloading

In an untrusted IoT computing environment where several sensor nodes/de-

vices are connected to a cloud server through edge nodes-devices, the outsourc-

ing of resources/computations or sensitive data from end devices to potentially

untrusted edge nodes or devices can create challenges regarding the confiden-

tiality and integrity of the computation. Dishonest serving nodes can modify

both the input data and the actual computation and return plausible but false

results. The untrustworthiness of the computing party is also a problem if the

input data contains sensitive information. This type of environment, where we

cannot assume inherent trust within a network and its entities, should be dealt

with a Zero-trust approach, Syed et al. [2022], requiring strict identity verifi-
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cation and continuous authentication for all users, devices, and applications.

To ensure confidantiality, homomorphic encryption (HE) can be applied to

compute on encrypted data [Rivest et al., 1978, Gentry, 2009]. Fully homomor-

phic encryption enables computations to be performed on encrypted informa-

tion and those computations translate to the unencrypted domain. However,

fully homomorphic encryption is computationally demanding and may be too

costly for edge devices even if advances are made in the development of these

schemes. Flexible mechanisms are needed to determine whether certain data

can be transmitted for outsourced computation.

Verifiable computing is seen as one of the potential solution candidates to

the integrity problems. In verifiable computing, the computing party generates

proof that the required computation was performed correctly [Babai et al.,

1991, Gennaro, 2017]. The proof is significantly easier to check than to repeat

the actual computation. Thus, computation can be outsourced even to an un-

trusted party with its integrity guaranteed. The generation of such proofs is,

however, computationally expensive and can be prohibitively for edge devices.

2.3.2. Security of Machine Learning

It is evident that ML plays an integral part in 6G EI. Therefore, the trust-

worthiness of the applied models is essential in the correct operation of the

network. However, there are multiple challenges regarding the security of ML.

In particular, we have to ensure that 1) the training data is correct and not

disclosed to unauthorized parties, 2) the model training is executed correctly

and no false data is inserted into the training set, and 3) the applied models do

not enable malicious parties to infer information about the training data from
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Figure 2.3: Challenges related to the security of machine learning.

them or to exploit the model, for example, through evasion attacks [Biggio

et al., 2014]. These challenges have been discussed in detail below and have

been depicted in Fig. 2.3.

EI can function correctly only if the applied models are correct. Regarding

AI and ML, a correct model requires correct training data. Poisoning attacks

insert malicious data into the training set in order to skew the trained model.

As a result, the model may exhibit poor generalization and behave incorrectly.

In order to have trustworthy models, poisoning attacks need to be detected, and

the false data need to be removed from the training set. In general, protecting

against poisoning is hard [Pitropakis et al., 2019], and there is not a generic

method that works for any use case. Additional research is needed to have

satisfactory protection mechanisms for the EI use case. When using the FL

proposed in Zhu et al. [2020], there are risks of potential poisoning attacks to

occur [Tolpegin et al., 2020].

While the integrity of training data is important, the same applies to the
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integrity of the trained model. For EI, the training is performed on the edge,

potentially by an untrusted entity. Such delegation of computing can raise se-

rious questions of trust. The training party has complete authority over the

training process and can potentially insert its own data into the training set

or create a backdoor into the model. Such a backdoor can have incorrect and

unexpected behaviour on certain inputs specified by the malicious party. Fur-

thermore, such a backdoor can be provably undetectable even if the user tries

to validate the model’s accuracy and robustness [Goldwasser et al., 2022].

As discussed in section 2.3.1, one of the potential solutions to the integrity

issues is Verifiable computing, which generates computational proofs and ver-

ifies the correctness of the outsourced information. However, the generation of

proof for the correctness of training can be prohibitively expensive.

2.3.3. Post-quantum cryptography

Quantum computing has taken large steps towards practicality during the last

decade. It is widely known that certain problems are easier to solve on a quan-

tum computer than on a traditional one. Some of those problems underlay the

contemporary public-key encryption algorithms. Therefore, a lot of research

has recently concentrated on the security of cryptographic algorithms in the

quantum computing model.

Since quantum computing will have a significant role in the context of 6G

and EI, the employed security mechanisms should be designed in a way that it

should guarantee and fulfil the desired security requirements for the quantum

computing models. Cryptographic primitives that are secure both in the stan-

dard computational model and the quantum model are called post-quantum
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secure. There are recent efforts to standardize post-quantum primitives by

various institutions, such as the National Institute of Standards and Technol-

ogy (NIST) in the United States. However, post-quantum security requires a

trade-off in terms of performance and efficiency.

In general, cryptography comes in two flavours: symmetric and asymmet-

ric (or public-key cryptography). Quantum computing affects both, but mostly

public-key primitives. Starting from 5G, public-key protocols have become an

integral part of the core of wireless networks. Contemporary asymmetric cryp-

tography is based on mathematical problems such as integer factorization and

the discrete logarithm problem that can be solved quickly on a quantum com-

puter. These methods need to be replaced for post-quantum secure versions.

Symmetric cryptography involves primitives, such as encryption and mes-

sage authentication. Fortunately, contemporary primitives are only lightly af-

fected by quantum algorithms. However, some modifications are needed in or-

der to preserve the current security level. Due to Grover’s algorithm [Grover,

1996], the key length needs to be doubled in the quantum model (i.e. 128-bit

encryption to 256-bit encryption). In practice, such an increase incurs a modest

performance penalty. Otherwise, the same symmetric cryptographic primitives

can be applied.

Asymmetric cryptography involves primitives such as key exchange, public-

key encryption and digital signatures. Contemporary primitives are typically

based on elliptic curves and the elliptic curve Diffie-Hellman problem (ECDH),

which is relatively efficient and has compact public and private keys. These

methods are not secure in the quantum computing model and need to be

replaced with less efficient ones. Currently, there are different alternatives with

their own pros and cons.
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With regard to public-key cryptography in 6G EI, choices need to be made

between methods that provide efficient key generation, relatively compact keys

or signatures or efficient operations (encryption, signing, etc.), but not all at

the same time. Their efficient use in post-quantum secure wireless networks

remains a future challenge.

2.4. Privacy Challenges in 6G EI

The protection of privacy on the edge can be challenging. Devices collect huge

amounts of personally identifiable information (PII), which can potentially be

used to monitor every action of an individual. Thus, end-to-end encryption

should be applied to protect the users from those that seek to enact harm,

and computation should be performed only by trusted entities. Privacy laws,

such as GDPR, also require that PII needs to be protected. The GDPR also

mandates that the system has to adopt a privacy-by-design approach; the whole

system has to be designed from the ground up to protect the privacy of its users.

For ML models that are trained exclusively on sensitive information, the

protection should not refer only to the samples used for training or to the input

to a classifier. In many situations, the machine learning model itself needs to be

protected since PII can be inferred directly from the model using, e.g., model

inversion or extraction, where information about the training data is deduced

from the model [Fredrikson et al., 2014, 2015] or membership inference, where

the owner of a specific training data point is deduced [Shokri et al., 2017]. In

the contemporary setting, the training data is typically seen by the training

party.

Privacy-preserving ML attempts to enable model training without the dis-
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closure of the private training set. In general, there are two approaches to

the protection of PII: its removal using anonymization techniques and protec-

tion using cryptographic protocols. Anonymization techniques [Samarati and

Sweeney, 1998, Machanavajjhala et al., 2007, Li et al., 2007] remove any PII

from the training data by grouping individuals so that it is impossible to iden-

tify a single individual from the group. However, for certain use cases, such a

grouping may render classification tasks impossible or limit its accuracy.

The most widely used anonymization approach to prevent the leakage of

PII is differential privacy [Dwork et al., 2006]. In general, differential privacy

inserts noise into the training data in order to prevent the extraction of PII. It

is an efficient method of preventing PII leakage but can lead to performance

issues regarding training [Wei et al., 2020], as well as poor performance of the

final model. In addition, differential privacy cannot be applied in all use cases;

it has strict limitations for certain types of data [Liu et al., 2021] and can be

totally inapplicable if the model is trained on data from a single individual.

Another widely adopted method for limiting access to the training data is

to apply FL. In FL, training data is not transferred to a centralized server.

Instead, a local model is trained close to the data collection. Then, multiple

local models are transferred to the server, and a final global model is computed

using the local models. Since the training data does not leave the collection

site, FL offers better privacy guarantees than the centralized training approach.

However, it should be noted that FL does not offer perfect privacy guarantees:

the local models can be abused to infer information about the training data

using, e.g. model inversion and membership inference attacks [Shokri et al.,

2017]. FL is also highly susceptible to poisoning attacks.

On the other hand, cryptographic schemes can also be applied to pro-
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tect sensitive training data. For certain models, homomorphic encryption (HE)

[Rivest et al., 1978, Gentry, 2009] can be applied to perform the training on

encrypted data. Thus, the confidentiality of both the training data and the

final model is preserved. The deployment of the fully homomorphic encryp-

tion requires significant computational capabilities, but, in some use cases, its

limited or lightweight version may be efficient and effective [Liu et al., 2016,

Phong et al., 2018, Gilad-Bachrach et al., 2016].

Functional encryption (FE) [Boneh et al., 2011] is similar to HE, but the

output of the computation is not hidden. It is also significantly more efficient

than HE, but there are limitations: currently, it is not known how to enable

efficient FE for other than linear or quadratic functions.

Secure multiparty computing (MPC) is another approach that can protect

the confidentiality of the training data. In MPC, multiple parties jointly com-

pute a function on hidden data and learn only the output of the computation.

Thus, the training data can remain confidential while the model training is

performed by running MPC. The drawback of MPC is the large amount of

communication required while running the protocol. If the number of parties

is limited, the computation is relatively efficient - especially compared to HE -

but does not scale well with the number of participants due to the communi-

cation costs. Contrary to HE and FE, secure MPC is an interactive protocol;

it requires the computing parties to be online and is a feasible choice only if

interactivity between the data contributors is possible.

The benefit of the cryptographic approach compared to anonymization is

that no noise is added to the training data, resulting in better accuracy. How-

ever, it should be noted that the discussed methods are costly in terms of

computation and communication, and further studies are needed in order to
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Figure 2.4: Methods for privacy-preserving machine learning.

assess their feasibility in EI. Privacy-protection methods presented in this sec-

tion have been collectively depicted in Fig. 2.4.

2.5. Trust Challenges in 6G EI

Trust raises challenges for integration via the usage of EI in the 6G era. For ex-

ample, 6G is expected to provide an interconnected computing platform where

several network elements and service providers will require frequent collabo-

ration and communication; it is highly vital to establish an embedded trust

management mechanism among them. Also, EI systems demand communica-

tion and exchange of data and local models, which raise trust challenges in

collecting, storing, and processing. Notably, trust formation is done via ad-

vanced technologies, ensuring security.
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Trust is critical in the 6G era, especially when EI is in use. Applying EI

cannot guarantee trust in a cloud-based system when the system needs com-

munication from a set of different devices and resources. Also, with the next

generation of IoT systems, the requirements for collaboration [Ziegler et al.,

2021] raise the trust in communication, data generation, and computation.

Hence, if a suitable trust management mechanism is placed, it will minimise

the need for intermediaries and eventually help in the overall cost reduction

of the heterogeneous massive-scale IoT application. Notably, the swift growth

and the numerous demands of FL in EI raise trust challenges to deploy the

technology in the 6G era. Therefore, the 6G white paper [Ylianttila et al., 2020]

mentions the importance of trust in increasing security in 6G via defining trust

modelling, policies, and mechanisms. Also, [Porambage et al., 2021b,a] points

out the need for trust network topologies for forming EI services, including au-

thentication, access control, data integrity, and mutual platform verification.

The 6G architecture proposed by [Ziegler et al., 2020] follows the heterogeneous

cloud (het-cloud) computing environment, which will be comprised of various

subnetworks, edge clouds, private clouds, central cloud, and public cloud. In

such an environment, trustworthiness challenges arise due to the heterogeneous

and distributed het-cloud architecture components connected from different lo-

cations and operated/managed by diverse stakeholders. Besides, the huge scale

of millions of subnetworks and billions of data sources (sensors) raises further

trust challenges. Zero-trust approach (ZTA), Syed et al. [2022], emphasizes

trust management in every component of a communication system by requir-

ing continuous verification and validation of the identity and security posture

of users, devices, and applications at every interaction, ensuring that trust is

never assumed and security is maintained throughout the communication pro-
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cess. Therefore, the creation of multivendor trust domains via the cloud stack

and topologies that connect untrusted domains as subnetworks of data gen-

eration is required. In particular, the data generation side, including sensors,

devices, and human-machine interfaces, is the origin of threats in trust data

collection. From the network side, trust is a question for subnetworks that

require secure definitions, such as authentication and identity.

The trust related to EI is from data and models via procedures, includ-

ing collection, storage, and process. Due to the vulnerabilities of the sensor

networks in attacks, the guarantee of trust in collected data is a huge ques-

tion, especially when applying EI [Zhang et al., 2021]. For example, due to the

diversity of sensor networks, it may become hard to protect all the devices,

and thus, the possibility of adversary attacks also increases. Besides that, bad

environmental conditions can also cause hurdles in ensuring the correctness of

collected data. Therefore, to maintain the required trust in collected data, it

is highly critical to detect and recognize the sensor failures, which will help

eliminate the noise data and improve the overall system performance. In ad-

dition, maintaining data storage raises security issues concerning the integrity

and therefore requires suitable solutions, e.g., since the storage of collected

data in centralized locations leads to security concerns due to data integrity or

single-point failure of storage, a distrusted storage mechanism can be useful to

increase the data/resources availability and can improve the performance by

performing dynamic load balancing. Interestingly, leveraging EI in heteroge-

neous networks leads to issues related to trust in exchange for training models.

For example, when deploying FL, the most significant challenges affecting the

trust are single-point failure of aggregator, malicious clients or false data and

lack of incentives [Bagdasaryan et al., 2020].

20



The formation of trust is frequently based on reputation; however, with the

growth of advanced technologies, trust can be shaped by novel technologies.

In particular, the trust in current works is mainly based on logs revealing the

history of operations. Blockchain technology [Ylianttila et al., 2020, Poram-

bage et al., 2021b, Nguyen et al., 2021b] can be a promising solution for trust

formation in the 6G era, especially applying EI. Particularly, the collaboration

of service providers requires trust that can be enabled by leveraging blockchain

technology [Nguyen et al., 2022, 2019]. Moreover, due to the immutability and

transparency, blockchain supports audits by keeping track of records to build

trust in communication and verification. Also, via the integration between

blockchain and FL [Kim et al., 2020, Lu et al., 2020, Nguyen et al., 2021a],

the trust of EI in 6G is an example case for the promise of this technology

to address trust challenges for 6G EI. In the concern of trust-based hardware,

Trusted Execution Environments (TEE) is another notable trusted solution for

confidentiality and integrity in specific network environments [Ziegler et al.,

2021]. Like this consideration, [Ylianttila et al., 2020] mentions pre-defined li-

abilities as the trusted party to handle various liability-related challenges, e.g.,

safety and work health.

2.6. Security Standardization for EI and

6G

Security-related standardization for EI and 6G is still in its infancy. However,

for data privacy and security in general, various standards, such as ISO/IEC TS

27570 [ISO/IEC, 2022a] and ISO/IEC DIS 27400 [ISO/IEC, 2022b] have been
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developed by, e.g., the International Organization for Standardization (IOS)

and the International Electrotechnical Commission (IEC). The former provides

guidelines and recommendations for the management of privacy and the us-

age of standards, while the latter provides guidance for principles and controls

to provide private and secure IoT systems, services and solutions [ISO/IEC,

2022b]. Furthermore, the European Telecommunications Standards Institute

(ETSI) has recently unveiled ETSI EN 303 645 [ETSI, 2020] to provide cyber-

security standards and a baseline for IoT consumer products and certification

schemes. While these guidelines do not specifically refer to Edge AI for 6G,

they are applicable for developing private and secure edge AI models and al-

gorithms to provide trustworthy products and services.

ETSI Industry Specification Group (ISG) Multi-Access Edge Computing

(MEC) group recently published a white paper on MEC security [ETSI, 2022]

highlighting the status of the ongoing standardization activities, as well as

potential future trends for MEC security. Along with the evolution of the

next-generation 6G networks, the report presented insight into the security

standardization needed for edge computing-related technologies. For example,

the privacy-preserving AI/ML algorithms at the edge network are vital for

securing the users’ critical information. Therefore, standardization efforts are

needed to develop trustworthy AI/ML models for edge networks. Moreover,

DLTs are an important security enabler for 6G and edge intelligence-enabled

systems, e.g., by providing decentralized trust. To maximize the benefits of

DLTs, efforts are required for standardizing various security-related processes,

e.g., for smart contracts-based mechanisms.

NIST has been at the forefront towards working on various standards for

post-quantum cryptography (PQC) solutions, e.g., standards for PQC algo-
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rithms that are acceptable for both quantum and classical systems [Alagic

et al., 2020]. Related to the 6G security standards, ITU recently published

a technical paper on the roadmap of 5G security standardization where the

emphasis was also given to analyzing and identifying potential gaps in 5G

security standards [ITU, 2022]. 5G IA released a white paper presenting the

European vision and recommendation on future 6G ecosystems for policymak-

ers and businesses that cover various dimensions of 6G networks, including the

need for network and service security and trustworthiness for next-generation

6G networks [The 5G Infrastructure Association, 2021]. Furthermore, various

research projects worldwide, such as 6G Flagship, HEXA-X, and MSIT 6G,

among others, are aiming to contribute towards various security standardiza-

tion activities in the coming future [Katz et al., 2018, Uusitalo et al., 2021,

Castro, 2020].

2.7. Conclusion

The incorporation of EI with future 6G networks is vital from the perspec-

tive of enabling massive-scale smart and connected IoT applications with the

key requirements of ultra-low latency, reliability, faster data analytics, and

intelligent distributed decision-making. Such smart and hyperconnected digi-

tal environments are assumed to be highly complex and, therefore, vulnerable

to various threats. For this, it is crucial to design and implement sufficient

security mechanisms for securing intelligent 6G-enabled applications and com-

munication architectures. In this chapter, we have provided an overview of the

potential security, privacy and trust issues for 6G EI systems, such as threats

related to computational offloading and distributed service provisioning on the
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edge, vulnerabilities due to the complex integration of various enabling tech-

nologies, and trust issues when multiple devices and stakeholders providers

share information and resources using a common platform. In addition to the

identified security, privacy and trust issues, the work also briefly presents some

of the potential solutions to these issues. Moreover, a brief discussion about

ongoing security-related standardization activities for edge intelligence and 6G

systems is provided.
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classification. IEEE Journal of Biomedical and Health Informatics, 20(2):

655–668, 2016. doi: 10.1109/JBHI.2015.2407157.

Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.

Blockchain and federated learning for privacy-preserved data sharing in in-

29

https://doi.org/10.1145/3436755


dustrial iot. IEEE Transactions on Industrial Informatics, 16(6):4177–4186,

2020. doi: 10.1109/TII.2019.2942190.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-

ishnan Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity.

ACM Trans. Knowl. Discov. Data, 1(1):3–es, 2007. ISSN 1556-4681. doi:

10.1145/1217299.1217302. URL https://doi.org/10.1145/1217299.1217302.

Mithun Mukherjee, Rakesh Matam, Constandinos X. Mavromoustakis, Hao

Jiang, George Mastorakis, and Mian Guo. Intelligent edge computing: Secu-

rity and privacy challenges. IEEE Communications Magazine, 58(9):26–31,

2020. doi: 10.1109/MCOM.001.2000297.

Garima Nain, K.K. Pattanaik, and G.K. Sharma. Towards edge computing in

intelligent manufacturing: Past, present and future. Journal of Manufactur-

ing Systems, 62:588–611, 2022.

Dinh C. Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N. Pathirana,

Long Bao Le, Aruna Seneviratne, Jun Li, Dusit Niyato, and H. Vincent

Poor. Federated learning meets blockchain in edge computing: Opportuni-

ties and challenges. IEEE Internet of Things Journal, 8(16):12806–12825,

2021a. doi: 10.1109/JIOT.2021.3072611.

Huong Nguyen, Tri Nguyen, Teemu Leppänen, Juha Partala, and Susanna

Pirttikangas. Situation awareness for autonomous vehicles using blockchain-

based service cooperation. In Xavier Franch, Geert Poels, Frederik Gailly,

and Monique Snoeck, editors, Advanced Information Systems Engineering,

pages 501–516, Cham, 2022. Springer International Publishing. ISBN 978-

3-031-07472-1.

30

https://doi.org/10.1145/1217299.1217302


Tri Nguyen, Lauri Lovén, Juha Partala, and Susanna Pirttikangas. The Inter-

section of Blockchain and 6G Technologies, pages 393–417. Springer Inter-

national Publishing, Cham, 2021b. ISBN 978-3-030-72777-2. doi: 10.1007/

978-3-030-72777-2 18. URL https://doi.org/10.1007/978-3-030-72777-2 18.

Tri Hong Nguyen, Juha Partala, and Susanna Pirttikangas. Blockchain-based

mobility-as-a-service. In 2019 28th International Conference on Computer

Communication and Networks (ICCCN), pages 1–6, 2019. doi: 10.1109/

ICCCN.2019.8847027.

Jianli Pan and James McElhannon. Future Edge Cloud and Edge Computing

for Internet of Things Applications. IEEE Internet of Things Journal, 5,

2018.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho

Moriai. Privacy-preserving deep learning via additively homomorphic en-

cryption. IEEE Transactions on Information Forensics and Security, 13(5):

1333–1345, 2018. doi: 10.1109/TIFS.2017.2787987.

Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios

Anastasiadis, and George Loukas. A taxonomy and survey of attacks against

machine learning. Computer Science Review, 34:100199, 2019. ISSN 1574-

0137. doi: https://doi.org/10.1016/j.cosrev.2019.100199. URL https://www.

sciencedirect.com/science/article/pii/S1574013718303289.

Pawani Porambage, Gürkan Gür, Diana Pamela Moya Osorio, Madhusanka

Livanage, and Mika Ylianttila. 6g security challenges and potential solutions.

In 2021 Joint European Conference on Networks and Communications 6G

Summit (EuCNC/6G Summit), pages 622–627, 2021a. doi: 10.1109/EuCNC/

6GSummit51104.2021.9482609.

31

https://doi.org/10.1007/978-3-030-72777-2_18
https://www.sciencedirect.com/science/article/pii/S1574013718303289
https://www.sciencedirect.com/science/article/pii/S1574013718303289


Pawani Porambage, Gürkan Gür, Diana Pamela Moya Osorio, Madhusanka

Liyanage, Andrei Gurtov, and Mika Ylianttila. The roadmap to 6g security

and privacy. IEEE Open Journal of the Communications Society, 2:1094–

1122, 2021b. doi: 10.1109/OJCOMS.2021.3078081.

Zakria Qadir, Khoa N Le, Nasir Saeed, and Hafiz Suliman Munawar. Towards

6g internet of things: Recent advances, use cases, and open challenges. ICT

Express, 2022.

Partha Pratim Ray. A perspective on 6g: Requirement, technology, enablers,

challenges and future road map. Journal of Systems Architecture, 118:

102180, 2021.

Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and

privacy homomorphisms. Foundations of secure computation, 4(11):169–180,

1978.

Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing

information: k-anonymity and its enforcement through generalization and

suppression, 1998.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 3–18, 2017. doi: 10.1109/

SP.2017.41.

Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and Mika

Ylianttila. Ai and 6g security: Opportunities and challenges. In 2021

Joint European Conference on Networks and Communications 6G Sum-

32



mit (EuCNC/6G Summit), pages 616–621, 2021. doi: 10.1109/EuCNC/

6GSummit51104.2021.9482503.

Christos Stergiou, Kostas E. Psannis, Byung-Gyu Kim, and Brij Gupta. Se-

cure integration of IoT and Cloud Computing. Future Generation Computer

Systems, 78:964–975, 2018.

Yuanyuan Sun, Jiajia Liu, Jiadai Wang, Yurui Cao, and Nei Kato. When ma-

chine learning meets privacy in 6g: A survey. IEEE Communications Surveys

Tutorials, 22(4):2694–2724, 2020. doi: 10.1109/COMST.2020.3011561.

Naeem Firdous Syed, Syed W. Shah, Arash Shaghaghi, Adnan Anwar, Zubair

Baig, and Robin Doss. Zero trust architecture (zta): A comprehensive survey.

IEEE Access, 10:57143–57179, 2022. doi: 10.1109/ACCESS.2022.3174679.

Getenet Tefera, Kun She, Maya Shelke, and Awais Ahmed. Decentralized

adaptive resource-aware computation offloading caching for multi-access

edge computing networks. Sustainable Computing: Informatics and Systems,

30, 2021.

The 5G Infrastructure Association. European Vision for the 6G Network

Ecosystem. White Paper, 2021.

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poi-

soning attacks against federated learning systems. In Liqun Chen, Ninghui

Li, Kaitai Liang, and Steve Schneider, editors, Computer Security – ES-

ORICS 2020, pages 480–501, Cham, 2020. Springer International Publishing.

ISBN 978-3-030-58951-6.
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