Avoidance Algorithms

- Single instance of a resource type
 - Use a resource-allocation graph
- Multiple instances of a resource type
 - Use the banker's algorithm

Banker's Algorithm

- Multiple instances
- Each process must a priori claim maximum use
- When a process requests a resource it may have to wait
- When a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker's Algorithm

Let n = number of processes, and m = number of resources types.

- Available: Vector of length *m*. If available [j] = k, there are *k* instances of resource type R_j available
- Max: n x m matrix. If Max [i,j] = k, then process P_i may request at most k instances of resource type R_i
- Allocation: $n \ge m$ matrix. If Allocation[i,j] = k then P_i is currently allocated k instances of R_i
- Need: n x m matrix. If Need[i,j] = k, then P_i may need k more instances of R_j to complete its task

Need [i,j] = Max[i,j] - Allocation [i,j]

Safety Algorithm

 Let Work and Finish be vectors of length m and n, respectively. Initialize: Work = Available Finish [i] = false for i = 0, 1, ..., n-1

2. Find an *i* such that both:

(a) *Finish* [*i*] = *false*(b) *Need_i* ≤ *Work*If no such *i* exists, go to step 4

- 3. Work = Work + Allocation; Finish[i] = true go to step 2
- 4. If *Finish* [*i*] == *true* for all *i*, then the system is in a safe state

Resource-Request Algorithm for Process *P*_{*i*}

 $Request_i = request vector for process P_i$. If $Request_i[j] = k$ then process P_i wants k instances of resource type R_i

- If *Request_i* ≤ *Need_i* go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim
- If *Request_i* ≤ *Available*, go to step 3. Otherwise *P_i* must wait, since resources are not available
- 3. Pretend to allocate requested resources to P_i by modifying the state as follows:

```
Available = Available - Request;
Allocation; = Allocation; + Request;
Need; = Need; - Request;
```

- If safe \Rightarrow the resources are allocated to P_i
- If unsafe $\Rightarrow P_i$ must wait, and the old resource-allocation state is restored

Example of Banker's Algorithm

• 5 processes P_0 through P_4 ;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T_0 :

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
P_{0}	010	753	332
P_1	200	322	
P_2	302	902	
P_{3}	211	222	
P_4	002	433	

Example (Cont.)

• The content of the matrix *Need* is defined to be *Max – Allocation*

 $\frac{Need}{A B C} \\ P_0 7 4 3 \\ P_1 1 2 2 \\ P_2 6 0 0 \\ P_3 0 1 1 \\ P_4 4 3 1$

• The system is in a safe state since the sequence $\langle P_1, P_3, P_4, P_2, P_0 \rangle$ satisfies safety criteria

Example: P_1 Request (1,0,2)

Check that Request \leq Need (that is, (1,0,2) \leq (1,2,2) \Rightarrow true

Check that Request \leq Available (that is, (1,0,2) \leq (3,3,2) \Rightarrow true

Updated

All	<u>ocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_{0}	010	743	230
P_{1}	302	020	
P_2	302	600	
P_{3}	211	011	
P_4	002	431	

Available = Available - Request; Allocation; = Allocation; + Request; Need; = Need; - Request;

Executing safety algorithm shows that sequence < **P**₁, **P**₃, **P**₄, **P**₀, **P**₂ > satisfies safety requirement

- Q. Can request for (3,3,0) by P_4 be granted immediately?
- Q. Can request for (0,2,0) by P_0 be granted immediately?

Example: P₄ Request (3,3,0)

Check that Request \leq Need (that is, (3,3,0) \leq (4,3,1) \Rightarrow true

Check that Request \leq Available (that is, (3,3,0) \leq (2,3,0) \Rightarrow false

Request can not immediately be granted. P4 has to wait since resources are not available.

Example: P_0 Request (0,2,0)

Check that Request \leq Need (that is, (0,2,0) \leq (7,4,3) \Rightarrow true

Check that Request \leq Available (that is, (0,2,0) \leq (2,3,0) \Rightarrow true

U	р	d	a	t	e	d
	_					

Al	location	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_{0}	030	723	210
P_1	302	020	
P_2	302	600	
P_{3}	211	011	
P_4	002	431	

Unsafe.

P0 must wait. The old resource-allocation state will restore.

Final restored state

<u>All</u>	<u>ocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_{0}	010	743	230
P_1	302	020	
P_2	302	600	
P_{3}	211	011	
P_4	002	431	

Q. Assume no. of process =4, Max request per process is = 3, what is the minimum no. of resources that will not lead to deadlock condition.

A. 4(3-1)+1 = 9, minimum 9 resource

Q. Consider a system consisting of **m** resources of the same type being shared by **n** processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold:

- a. The maximum need of each process is between 1 and m resources.
- b. The sum of all maximum needs is less than m+n.

Q. Suppose n processes, P1, Pn share m identical resource units, which can be reserved and released one at a time. The maximum resource requirement of process Pi is Si, where Si > 0. Which one of the following is a sufficient condition for ensuring that deadlock does not occur?

(a)
$$\forall i, s_i < m$$

(b) $\forall i, s_i < n$
(c) $\sum_{i=1}^n s_i < (m+n)$
(d) $\sum_{i=1}^n s_i < (m*n)$

A. option C

Solution $(S_1 - 1) + (S_2 - 1) + (S_3 - 1) + (S_4 - 1) + \dots + (S_n - 1) + 1 = m$ $(S_1 + S_2 + S_3 + S_4 + ... + S_n) + (1 + 1 + 1 + 1 + ... + n) + 1 = m$ $\sum^{n} S_{i} + n = m$ $\sum^{n} S_{i} < m+n$