
Avoidance Algorithms

● Single instance of a resource type

● Use a resource-allocation graph

● Multiple instances of a resource type

● Use the banker’s algorithm

Banker’s Algorithm

● Multiple instances

● Each process must a priori claim maximum use

● When a process requests a resource it may have to wait

● When a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker’s Algorithm

● Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj
available

● Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of
resource type Rj

● Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj

● Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its
task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

 Requesti = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances
of resource type Rj

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since process has
exceeded its maximum claim

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since resources are not
available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

● If safe ⇒ the resources are allocated to Pi

● If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

● 5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5 instances), and C (7 instances)

● Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example (Cont.)
● The content of the matrix Need is defined to be Max – Allocation

Need

A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

● The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)
Check that Request ≤ Need (that is, (1,0,2) ≤ (1,2,2) ⇒ true

Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

Updated

 Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement

● Q. Can request for (3,3,0) by P4 be granted immediately?

● Q. Can request for (0,2,0) by P0 be granted immediately?

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

Example: P4 Request (3,3,0)

Check that Request ≤ Need (that is, (3,3,0) ≤ (4,3,1) ⇒ true

Check that Request ≤ Available (that is, (3,3,0) ≤ (2,3,0) ⇒ false

Request can not immediately be granted. P4 has to wait since resources are not available.

Example: P0 Request (0,2,0)
Check that Request ≤ Need (that is, (0,2,0) ≤ (7,4,3) ⇒ true

Check that Request ≤ Available (that is, (0,2,0) ≤ (2,3,0) ⇒ true

Updated

 Allocation Need Available

A B C A B C A B C

P0 0 3 0 7 2 3 2 1 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Unsafe.
P0 must wait. The old resource-allocation state will restore.

Final restored state

 Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Q. Assume no. of process =4, Max request per process is = 3, what is the minimum no. of resources that
will not lead to deadlock condition.

A. 4(3-1)+1 = 9, minimum 9 resource

Q. Consider a system consisting of m resources of the same type being shared by n processes.
Resources can be requested and released by processes only one at a time. Show that the system is
deadlock free if the following two conditions hold:

a. The maximum need of each process is between 1 and m resources.

b. The sum of all maximum needs is less than m+n.

Q. Suppose n processes, P1, …. Pn share m identical resource units, which can be reserved and released
one at a time. The maximum resource requirement of process Pi is Si, where Si > 0. Which one of the
following is a sufficient condition for ensuring that deadlock does not occur?

A. option C

 P1 P2 P3 P4 ……….…. Pn

 (S1 -1) + (S2 -1) + (S3 -1) + (S4 -1) +……….…. (Sn -1) + 1 = m

S1 S2 S3 S4 ……….…. Sn

Solution

 (S1 + S2 + S3 + S4 +…Sn) + (1 + 1+ 1 + 1 +....n) + 1 = m

 ∑n Si + n = m

 ∑n Si < m+n

