Avoidance Algorithms

e Single instance of a resource type
o Use a resource-allocation graph

e Multiple instances of a resource type
e Use the banker’s algorithm

Banker’s Algorithm

Multiple instances
Each process must a priori claim maximum use
When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

e Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj
available

e Max: nx m matrix. If Max [i,/] = k, then process P, may request at most k instances of
resource type Rj

e Allocation: n x m matrix. If Allocation[i,j] = k then P, is currently allocated k instances of Rj

e Need: n x m matrix. If Need|i,j] = k, then PI. may need k more instances of F?j to complete its
task

Need [i,j] = Max|i,j] — Allocation |[i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available

Finish [i] = false fori=0,1, ..., n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Need. < Work

If no such i exists, go to step 4
3. Work = Work + AIIocationl.

Finishli] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process P,

Request. = request vector for process P.. If Request.[j] = k then process P; wants k instances
of resource type Rj

1. If Requesti < Need,. go to step 2. Otherwise, raise error condition, since process has
exceeded its maximum claim

2. If Requesti < Available, go to step 3. Otherwise P,. must wait, since resources are not
available

3. Pretend to allocate requested resources to P, by modifying the state as follows:
Available = Available - Request;
Allocation.= Allocation. + Request;
Need. = Need. - Request;
« If safe = the resources are allocated to P,
o If unsafe = Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

e S processes P, through P ;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances)
e Snapshot at time T
Allocation Max Available
ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P, 211 222
P4

002 433

Example (Cont.)

e The content of the matrix Need is defined to be Max - Allocation

Need
ABC
P 743
P, 122
P. 600
P. 011
P 431

e The system is in a safe state since the sequence < P1, P3, P4, 'Dz’ PO> satisfies safety criteria

Example: P, Request (1,0,2)

Check that Request < Need (that is, (1,0,2) < (1,2,2) = true

Check that Request < Available (that is, (1,0,2) < (3,3,2) = true

Updated
Allocation Need Available
ABC ABC ABC Available = Available - Request;
P 010 743 530 zllocatlon,: Allocation, +.Request,.;
P, 302 020 eed. = Need. - Request;
P, 302 600
P, 211 011
P, 002 431

Executing safety algorithm shows that sequence < P,, P,, P,, P, P> satisfies safety requirement

e Q. Can request for (3,3,0) by P, be granted immediately?
e Q. Canrequest for (0,2,0) by P, be granted immediately?

Example: P, Request (3,3,0)

Check that Request < Need (that is, (3,3,0) < (4,3,1) = true

Check that Request < Available (that is, (3,3,0) < (2,3,0) = false

Request can not immediately be granted. P4 has to wait since resources are not available.

Example: P, Request (0,2,0)

Check that Request < Need (that is, (0,2,0) < (7,4,3) = true

Check that Request < Available (that is, (0,2,0) < (2,3,0) = true

Updated
Allocation Need Available
ABC ABC ABC

P, 030 723 210
P, 302 020

P,302 600

P, 211 011
P,002 431

Unsafe.

PO must wait. The old resource-allocation state will restore.

Final restored state

Allocation Need Available
ABC ABC ABC

, 010 743 230
. 302 020
302 600

211 011
002 431

Q. Assume no. of process =4, Max request per process is = 3, what is the minimum no. of resources that
will not lead to deadlock condition.

A. 4(3-1)+1 =9, minimum 9 resource

Q. Consider a system consisting of m resources of the same type being shared by n processes.
Resources can be requested and released by processes only one at a time. Show that the system is
deadlock free if the following two conditions hold:

a. The maximum need of each process is between 1 and m resources.

b. The sum of all maximum needs is less than m+n.

Q. Suppose n processes, P1, Pn share m identical resource units, which can be reserved and released
one at a time. The maximum resource requirement of process Pi is Si, where Si > 0. Which one of the
following is a sufficient condition for ensuring that deadlock does not occur?

(a) vi,s;<m (b) Vi,s <n
n n
()) s<(m+n) (d)) s <(m*n)
=1 i=1
A. option C
Solution
P, P, P, P, o P
S, S, S, Sy i S,
(S;-1)+(S,-1)+(S;-1)+ (S, -1) +..oiennin. (S,-1)+1=m
(S;,+S,+S,+5,+..5)+(1+1+1+1+..n)+1=m
2"S.+n=m

2"S, <m+n

