Introduction to Astronomy AA 201 Fall Semester 2019

Instructor: Manoneeta Chakraborty

Email: manoneeta@iiti.ac.in

Extension: 839

Course webpage:

http://www.iiti.ac.in/people/~manoneeta/courses/AA201_2019/

 $\log \rho$

What happens after a star finishes of its fuel?

- As we have seen before, the (main-sequence) lifetime of a star depends on its mass.
- Subsequently, depending on the original mass, a number of outcomes are possible

Progenitor Mass	Outcome
<0.5 M _{solar}	T _{ms} < age of universe
$0.5 M_{solar} < M < 8 M_{solar}$	WD + planetary nebula
$8 M_{solar} < M < 20 M_{solar}$	Core-collapse+SN Neutron star
$M > 20 M_{solar}$	Core-collapse+SN Black hole

Life Cycle of a Star

By: Idrees Kahloon and Kevin Waterman

Sources: http://www.seasky.org/ cosmic/assets/images/starlife.jpg http://en.wikipedia.org/wiki/ Neutron star

After achieving equilibrium, the star begins burning up its supply of hydrogen and helium through nuclear fusion.

Red Giant

Loss of fuel in the core results in expansion by up to 1000 times.

Planetary Nebula

The star has no energy left and begins losing layers and forms a complex structure

White Dwarf

Very dense star that is the end stage of average star life.

Stellar Nebula

This is the protostar composed of dust clouds. In this stage the star is trying to achieve equilibrium between gravity, the pressure on the core, and the temperature.

Massive Star These fundamental stars pro-

These fundamental stars produce heavy metals that help regulate the accretion rates of normal stars, their formation is still a great mystery.

Red the end of star life.

Biggest stars in universe, with short life cycle. Forms at the end of

A stellar explosion that is triggered by the loss of any remaining fuel, enriches interstellar medium

Supernova

Neutron Star

Remnant of supernova that ejects particles.

Black Hole Infinite gravity, and no mass

Sirius B: first evidence

- First white dwarf discovered
- Mass from orbital effect of Sirius A (brightest)
 - $M_B \sim 1.05 M_{solar}$
- 1000 times fainter than Sirius A but hotter!
- R $\sim 5.5 \times 10^6 \text{ m} = 0.008 \text{ R}_{solar}$
- Density ~ 109 kg/m³
- Mixture of Carbon-Oxygen

Optical (top) and X-ray (bottom) images of Sirius A and B, which are an A-type star and a white dwarf. The optical image is dominated by the main sequence star, the X-ray image by the white dwarf.

White Dwarf Stars in M4
PRC95-32 · ST ScI OPO · August 28, 1995 · H. Bond (ST ScI), NASA

HST · WFPC2

What powers these objects?

- Reminder: Gravitational pressure balanced by thermal pressure of gas heated by fusion
- Here → Degeneracy pressure

 As star collapses → density increases → quantum mechanical effects becomes important

Degeneracy pressure

- Pauli exclusion principle
- For fermions, at least one quantum number must be different
- Quantum numbers: position, momentum, angular momentum, spin
- For normal gas density low, available phase space is large. But when density high → phase space low → exclusion principle becomes important

In degenarate electron gas, the electrons have much higher energy than thermal gas at the same temperature

White dwarfs

- Mass ~ 0.8 M_{solar}
- Radius ~ radius of earth
- Either He or C-O depending on progenitor
- Density ~ 10⁶ g/cm³.
- Temperature interior ~ 10⁷ K
- Maximum possible mass: 1.44 Msolar
 - Chandrasekhar limit!!
 - Relativistic degenarate gas behavior makes WD unstable
 - $P \sim \rho^{4/3}$

Neutron Stars

- What happens when core crosses Chandrasekhar limit? → Collapse
- High densities favour

-
$$p + e^- \rightarrow n + v_e$$

- Gravity balanced by degenerate neutrons (similar to degenerate electrons for WD)
- Typical density ~ 10¹⁴ g/cm³
- Mass ~ 1.4 3 M_{solar}
- Radius ~ 10 km
- Core material exotic displaying superconductivity and superfluidity at high temperatures
 - → nautre not understood!

Neutron Stars

Angular momentum conserved during collapse

- MR² Ω = constant
- $M_{NS} = M_{before} = M_{core}$
- $\Omega_{NS} = (R_{before}/R_{NS})^2 \Omega_{before}$

- Extremely Fast Rotators!!
- $R_{before} = 7X10^5 \text{ km}$; $R_{NS} = 10 \text{ km}$; $P_{before} = 27 \text{ d}$; $P_{NS} = 0.001 \text{ s}$

Pulsars

Axis of Rotation Radiation beam Radiation beam

"Lighthouse model" for pulsars

- Fast rotating neutron star with strong magnetic fields
- Lighthouse effect
- B ~ 10^{12} - 10^{13} G (10^{13} times geomagnetic field)
- Spin ~ ms 10 s
- Magnetic flux is conserved
 - BR² = constant

Black Holes

• Core $> 3 M_{solar} => Gravity wins$

Light emitted cannot escape gravitational attraction

- Escape velocity = velocity of light
 - → Schwarzschild radius

Near the blackhole

Light Bending

$$\frac{v_{\infty}}{v_0} = \left(1 - \frac{2GM}{r_0c^2}\right)^{1/2}.$$

$$z = \frac{\lambda_{\infty} - \lambda_0}{\lambda_0} = \frac{\nu_0}{\nu_{\infty}} - 1$$
$$= \left(1 - \frac{2GM}{r_0 c^2}\right)^{-1/2} - 1$$
$$\simeq \frac{GM}{r_0 c^2},$$

Gravitaional reshift

$$\frac{\Delta t_0}{\Delta t_\infty} = \frac{\nu_\infty}{\nu_0} = \left(1 - \frac{2GM}{r_0c^2}\right)^{1/2}.$$

Times slows down!

Summarising

- Most of the matter orbits a BH before slowly inspiralling in
- After falling loses history
- No hair theorem → all you need is M, S, Q
- Mass → 2 distinct classes (missing link?)
- Tidal effects will distort any rigid body before falling
- Light bending
- Time dilation
- Strong source of gravity and high energy radiation
- Every galaxy has BH at centre

- More exotic Stuff
 - Fate of a black hole
 - Wormholes

The Origin of the Solar System Elements

