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What happens after a star
finishes of its fuel?

* As we have seen before, the (main-sequence) lifetime of a star depends
on its mass.

* Subsequently, depending on the original mass, a number of outcomes
are possible

Progenitor Mass Outcome

<0.5M T __<age of universe

solar

0O5M__<M<8M WD + planetary nebula

solar solar

8M__<M<20M

sol

Core-collapse+SN
Neutron star

solar

M>20M_ Core-collapse+SN
Black hole



Life Cycle of a Star
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Sirius B: first evidence

First white dwarf discovered _‘

* Mass from orbital effect of
Sirius A (brightest)

- Mg ~ 1.05 Mg,

1000 times fainter than Sirius A
but hotter!

R~55X106m = 0.008 R,
* Density ~ 109 kg/m3
Mixture of Carbon-Oxygen (bottom) images of

Sirius A and B. which

Optical (top) and X-ray

are an A-type star and a
white dwarf. The optical
image is dominated by
the main sequence star,
the X-ray image by the
white dwarf.
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What powers these objects?

* Reminder: Gravitational pressure balanced by
thermal pressure of gas heated by fusion

* Here —» Degeneracy pressure

* As star collapses — density increases —
guantum mechanical effects becomes important



Degeneracy pressure

Pauli exclusion principle

For fermions, at least one quantum number must be different

Quantum numbers: position, momentum, angular momentum, spin

For normal gas density low, available phase space is large . But
when density high — phase space low — exclusion principle
becomes important



Energy
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In degenarate electron gas, the electrons have much higher energy than thermal gas
at the same temperature



White dwarfs

Mass ~ 0.8 My,

Radius ~ radius of earth

* Either He or C-O depending on progenitor
* Density ~ 106 g/cms .
* Temperature interior ~ 107 K

* Maximum possible mass: 1.44 Msolar
- Chandrasekhar limit!!
- Relativistic degenarate gas behavior makes WD unstable
- P ~ p4/3



log Pc

T3

Excluded Zone

log p



Neutron Stars

What happens when core crosses Chandrasekhar limit? — Collapse

High densities favour

- pte -n+y,

Gravity balanced by degenerate neutrons (similar to degenerate electrons for WD)

Typical density ~ 1014 g/cm3

Mass ~ 1.4 — 3 M,

Radius ~ 10 km

Core material exotic displaying superconductivity and superfluidity at high temperatures
— nautre not understood!



Neutron Stars

* Angular momentum conserved during collapse

* MR2 Q = constant
* |\/INS — |\/Ibefore — |\/Icore
* QNS — (Rbefore/RNS)2 Qbefore

* Extremely Fast Rotators!!
* Riiore=7X105 km ; Rys = 10 km; P e = 27 d; Pys = 0.001s



Pulsars

Axis of * Fast rotating neutron star with
Rotation strong magnetic fields

* Lighthouse effect
Radiation

beam * B~ 10%-10% G (10% times
geomagnetic field)

O * Spin~ms—10s
Q."\

T \5 * Magnetic flux is conserved
° 2 —
Radiation BR?4 = constant
beam

“Lighthouse model” for pulsars
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Black Holes

* Core >3 M, => Gravity wins

* Light emitted cannot escape gravitational
attraction

* Escape velocity = velocity of light
— Schwarzschild radius



Near the blackhole
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Summarising

Most of the matter orbits a BH before slowly inspiralling in
After falling loses history

No hair theorem - all youneedis M, S, Q

Mass — 2 distinct classes (missing link?)

Tidal effects will distort any rigid body before falling

Light bending

Time dilation

Strong source of gravity and high energy radiation

Every galaxy has BH at centre

More exotic Stuff
* Fate of a black hole
 Wormholes
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cosmic ray fission
exploding massive stars

exploding white dwarfs

merging neutron stars
dying low mass stars
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