
AA 472/672

Galactic and Extragalactic 
Astronomy.
Instructor : Dr. Bhargav Vaidya

bvaidya@iiti.ac.in

The Colliding Spiral Galaxies of Arp 271

Course Instructors —
Dr. Manoneeta Chakroborty
Dr. Bhargav Vaidya

Course Webpage  —
http://www.iiti.ac.in/people/~manoneeta/courses/AA672/

mailto:bvaidya@iiti.ac.in


Conservative Force.
❖ Total energy is conserved —> E = k.e + p.e. = constant.

❖ Work done by the force in moving the particle between 
two points is independent of the path taken.
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Effective Potential 
❖ The effective potential < total energy. 
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and the centripetal gravitational force given by 
 

 
  
Fr , gravity = −

G m1 m2

r 2 . (25.4.11) 

 
With this nomenclature, let’s review the four cases presented in Section 25.3. 
 

 
 

Figure 25.5 Plot of   Ueff (r)  vs.  r  with four energies corresponding to circular, elliptic, 
parabolic, and hyperbolic orbits 

 
25.4.1 Circular Orbit   E = Emin  
 
The lowest energy state,   Emin , corresponds to the minimum of the effective potential 

energy,   Emin = (Ueff )min . We can minimize the effective potential energy  
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and solve Equation (25.4.12) for   r0 , 

 
  
r0 =

L2

G m1m2

, (25.4.13) 

 
reproducing Equation (25.3.13). For   E = Emin ,   r = r0  which corresponds to a circular 
orbit. 
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Orbits and its nature.

E = Emin = Ue↵(r0) !
dUe↵

dr

����
r=r0

= 0

Emin < E < 0 : Ke↵ = 0 at rmin, rmax

E = 0 ! Ke↵(r = rpar) = �Ue↵(r = rpar)

E > 0

Circular Orbit

Ecliptic Orbit

Parabolic Orbit

Hyperbolic Orbit



Bound Orbits in Spherical potential
d2u
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Two roots : Apocenter and Pericenter. They are equal for circular orbit and 
distance between them is a measure of eccentricity.



Radial and Azimuthal Period

T✓ =
2⇡

�✓
Tr

Orbit will be closed if ratio between two time periods is a rational number.

Generally not true except for potential for a point mass and a 
homogenous sphere. … otherwise its a Rosette. 6
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FIG. 6: Generic orbits in central field (allowed)

The equation of motion for r is given by,

mr̈ − mrθ̇2 = f(r)

From which we get r′′(θ) along the trajectory,
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FIG. 7: Generic orbits in central field (not allowed)

One can expand r(θ) in a Taylor series in θ, and remem-
ber that r′(0) = 0,

r(θ)traj = r(0) + r′(0)θ + r′′(0)
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Consider a tangent to the annulus at the point P , Fig.



Galactic Dynamics.
❖ Preliminaries

❖ Central Force: Definition, Properties, EoM and examples 
like motion of stars in spherically symmetric potential.

❖ Galactic Dynamics 

❖ Potential Theory - spherical and flattened models , example : 
Milky Way Components and Potential. 

❖ Motion of stars in axisymmetric potential

❖ Two body system and relaxation Time.



Potential Theory in Galaxies.

•A simple description of the mass distribution and 
gravitational potential of a galaxy is to represent the stars 
as point masses. 

•This is a good approximation for elliptical galaxies, since 
these usually contain very little gas. 

•It is an adequate approximation for spiral/disk galaxies, 
because they usually contain significantly more stars 
than gas.



Newton’s Spherical Shell Theorem.

❖ A body inside a spherical shell experiences no net 
gravitational force from that shell. 

❖ A body outside a spherical shell experiences a 
gravitational force equal to the force of a mass point in 
the centre of the shell with the mass of the shell.

❖ Exercise : Prove both statements.



Potential Density Pair of a Galaxy.

Given �(r) ! ⇢(r)

Poisson Eqn ⇢(r) =
r2�

4⇡G

Given ⇢(r) ! �(r)

Integral Form �(r) = �G

Z
d3r0

⇢(r0)

|r0 � r|

Differential Form 

Integral Form 

To calculate the force F(x) on a particle 
of mass m at position r that is generated 
by the gravitational attraction of a 
distribution of mass ρ(rʹ). 
According to Newton’s inverse-square 
law of gravitation, the force F(x) may be 
obtained by summing the small 
contributions 



Rotation Curves of Spiral Galaxies

Homogeneous sphere:

If the density ⇢ inside a sphere is constant, then

M (r) =
4
3
⇡r

3
⇢, (2.13)

and the circular velocity is

vc =
✓

4⇡G⇢

3

◆ 1
2

r. (2.14)

The circular velocity in this case rises linearly with radius.
This means that the angular velocity ! = v/r is constant.
The body in question thus moves like a solid body.

Rotation curves of spiral galaxies

When the circular velocity of neutral (HI) hydrogen gas was measured well outside the visible
limits of spiral galaxies by radio-astronomers, it was expected that these velocities would decline
in a Keplerian fashion with distance from the centre.
Instead, the “rotation curves” of an overwhelming majority of spiral galaxies, representing vc (r),
were found to be almost independent of r out to several times the optical radii of these galaxies.

Figure 2.1: Spiral galaxy rotation curves

Power-law density profile:

A spherically symmetric system with a density that falls o↵ as some power of the radius

⇢ (r) = ⇢0
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, (2.15)
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Power-Law density profile.
⇢(r) = ⇢0

✓
r

r0

◆�↵

M(r) =
4⇡r↵0
3� ↵

r3�↵

v2circ(r) =
GM(r)

r
=

4⇡Gr↵0
3� ↵

r2�↵

For ↵ = 2 ! vcirc = const

Spherical power-law density profile

Interior Mass profile.

Circular velocity : For Flat rotation curve.



Other Potentials.

Figure 2.2: Density profiles of common models (from http://www.astro.utu.fi/⇠cflynn/
galdyn/lecture3.html).
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The Plummer density profile has a finite-density core and the density falls o↵ as r
�5 as r !1,

which is a steeper fall-o↵ than is generally seen in galaxies.
The Hernquist and Ja↵e profiles both decline like r

�4 at large r, which has a more sound
theoretical basis involving violent relaxation.
The Hernquist model has a gentle power-law cusp at small radii, while the Ja↵e model has a
steeper cusp.
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