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Predrag S. Stanimirović University of Nǐs, Faculty of Sciences and Mathematics, Department of Computer Sciences, Nǐs, Serbia
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Lecture 2:

Lecture 2:
- Definitions of gradient and Hessian, matrix and vector norms.

- Basic principles and methods in nonlinear unconstrained optimization.

- Overview of line search methods.

- Overview of gradient-descent methods, Newton method and quasi-Newton methods,
conjugate gradient nonlinear optimization methods.
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Introduction

The nonlinear unconstrained optimization problem is given in the general form

min f (x), x ∈ Rn, (1)

where f (x) = f (x1, . . . , xn) is given multivariable real and nonlinear objective function.

A local minimum x∗ is defined as an element for which there exists some δ > 0 such
that f (x∗) ≤ f (x) holds in the δ-neighborhood around x∗:

∀x ∈ A where ∥x− x∗∥ ≤ δ.

A global minimum is a point where the function value is smaller than or equal to
values at all other feasible points.
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The basic intuition

The basic intuition behind descent direction can be illustrated by a hypothetical
scenario.
A person is trying to get down (i.e., trying to find a minimum).
There is heavy fog such, and visibility is extremely low.
Thus, he must rely on local information to determine the descent direction in order to
locate the minimum.

Figure 1: Intuition behind descent direction algorithms.
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Basic principles and methods in nonlinear unconstrained optimization

The most frequently used general iterative scheme aimed to solve the
multivariable unconstrained minimization problem (1) is the line search method:

xk+1 = xk + tkdk ,

where xk+1 is a new iterative point, xk is the previous iterative point, tk > 0 is a
step length, and dk is a search direction.

The line search algorithm is based on an appropriate descent direction dk along which
the objective function f will be reduced and then computes a step size that determines
how far xk+1 should move along that direction.
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Algorithm 1 Global line search algorithm

Require: Objective f (x), initial point x0 ∈ Rn and the tolerance 0 < ε ≪ 1.
1: k := 0.
2: while stopping criterion is not satisfied do
3: Determine the vector of the search direction dk .
4: Compute the step length tk such that

f (xk + tk dk ) < f (xk ).

5: Compute the new approximation xk+1 := xk + tkdk .
6: k := k + 1
7: end while
8: return xk+1, f (xk+1).
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Definitions of gradient and Hessian, matrix and vector norms

In further, the following notation is used:

g(x) = ▽f (x), G(x) = ▽2f (x),

gk = ▽f (xk ), Gk = ▽2f (xk ),

where ▽f (x) =
[
∂f (x)
∂x1

, . . . ,
∂f (x)
∂xn

]T
denotes the gradient of f

and ▽2f (x) = H(x) =


∂2f (x)
∂x1∂x1

. . .
∂2f (x)
∂x1∂xn

...
. . .

∂2f (x)
∂xn∂x1

. . .
∂2f (x)
∂xn∂xn

 denotes the Hessian of f .

The gradient vector ∇f (x) at every point x ∈ Rn is normal to the level surface with
constant value f (x) and passes through the given point x.

The gradient vector g at the point x gives the direction of fastest increase of f at x.
In this way, negative gradient points in the direction of the steepest descent.
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The basic intuition

Figure 2: Gradient and anti-gradient directions.
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gradient descent (GD) method

A general rule for defining appropriate search directions arises from Taylor expansion
of the function f at the point xk+1 = xk + tkdk :

f (xk+1) := f (xk + tkdk ) ≈ f (xk ) + tkg
T
k dk . (2)

According to (2), the descent search direction dk must satisfy the descent condition

gTk dk < 0.

The descent direction can be computed using various methods.

Each descent direction leads to a new class of optimization methods.

Predrag S. Stanimirović University of Nǐs, Faculty of Sciences and Mathematics, Department of Computer Sciences, Nǐs, Serbia
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gradient descent (GD) method

The step size tk can be determined either exactly or inexactly.

The exact line search (ELS), which assumes the unidimensional function with respect
to the step size

Φ(t) := f (xk + tdk ) (3)

and the step-size is defined after the unidimensional optimization

f (xk + tkdk ) = min
t>0

Φ(t). (4)

The ELS rule may give smallest value f (xk+1). However, ELS is too expensive in
practice, especially in situations when xk is far from the exact solution.

Conversely, an inexact line search offers an efficient method for choosing a step length
that sufficiently decreases the objective function, such that

f (xk + tk dk ) < f (xk ).
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Algorithm 2 is one of algorithms exploited to determine the step length tk .

Algorithm 2 The backtracking inexact line search.

Require: Goal function f (x), a vector dk at xk and real quantities 0 < σ < 0.5,
β ∈ (0, 1).

1: t = 1.
2: While f (xk + tdk ) > f (xk ) + σtgTk dk , perform t := tβ.
3: Output: tk = t.
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gradient descent (GD) method

In the gradient descent (GD) method, the direction dk is defined by dk = −gk .

Such a choice simplifies the general line search iterations xk+1 = xk + tkdk into the
gradient descent (GD) iterative scheme

xk+1 = xk − tkgk . (5)

Figure 3: Illustration of the gradient descent.
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stopping criteria

Common stopping criteria include
a) Small gradient norm: ∥gk∥ ≤ ε
b) Small change in parameters:

∥x(k+1) − x(k)∥
∥x(k)∥

≤ ε1.

c) Small change in loss function:∣∣∣∣ f (xk+1)− f (xk )

f (xk )

∣∣∣∣ ≤ ε2.

d) Maximum number of iterations:
e) Early stopping:
Monitoring performance on a validation set and stopping training when the
performance starts to degrade (e.g., the loss increases or the accuracy decreases). It
can help avoid overfitting.
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gradient descent (GD) method
Advantages and disadvantages of GD methods can be summarized as follows.

1. GD methods are globally convergent to a local minimizer, regardless of the
starting point.

2. Many optimization methods switch to GD rule in the cases when they do not
make sufficient progress to the convergence.

3. The convergence is linear and usually very slow.
The steepest descent algorithm sometimes leads to orthogonal consecutive
directions and possibly zig-zag trajectory.

x
0

x
1

x*

Figure 4: Zigzagging in the steepest descent method
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Newton method and modifications
The pure Newton method (without line search) for minimization of a function
f : Rn → R is defined using a quadratic approximation of f (xk+1):

Φ(d) := f (xk + d) ≈ f (xk ) + gTk d+
1

2
dTGkd. (6)

The solution dk = mind(Φ(d)) is obtained using the matrix calculus

∂dTGkd

∂d
= (Gk + GT

k )d = 2Gkd

∂gTk d

∂d
= gk ,

which implies ∂Φ(d)
∂d

= gk + Gkd and further

∂Φ(d)

∂d
= 0 ⇐⇒ gk + Gkd = 0 ⇐⇒ d = −G−1

k gk .

So, the pure Newton method is defined by

xk+1 = xk − G−1
k gk . (7)

More efficient approach is to generate dk := G−1
k gk by solving the system of

linear equations Gkd = −gk with respect to d.
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Newton method and modifications

The Newton method with line search uses an appropriate step-size tk in the pure
Newton method (7):xk+1 = xk − G−1

k gk with the aim to ensure global stability.
The resulting iterations are of the form

xk+1 = xk − tkG
−1
k gk , (8)

wherein the step-size tk is computed performing a line search.

The Newton method is fast, with the second order convergence rate.
But, it exhibits three major drawbacks in practical applications.

1. The descent (and convergence) may not be achieved if the Newton iterations (7)
are started far away from the local minimizer.

2. Another drawback is numerically expensive requirement to compute the second
derivative matrix (Hessian) and its inverse in every iteration.Moreover, the second
derivatives may be sometimes unavailable.

3. The main disadvantages of the Newton method are the possibility that the
Hessian Gk is not positive definite.
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Newton method and modifications

Due to the mentioned drawbacks, numerous modifications of the Newton method
were created, which can be globally divided into two large groups: modified Newton’s
methods and quasi-Newton (QN) methods.
Main principle in QN methods is to use a symmetric n × n approximation Bk of the
Hessian Gk and Hk = B−1

k as an approximation of the inverse Hessian G−1
k .

Updates of the matrix Hk are defined based on the secant equation:

Hk+1yk = sk ⇐⇒ Bk+1sk = yk , (9)

where sk = xk+1 − xk , yk = gk+1 − gk .

The next iteration is defined by

xk+1 = xk − tkHkgk . (10)
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Newton method and modifications

Main Quasi-Newton updates.

1. The symmetric rank-one update (SR1 update)

Hk+1 = Hk +
(sk − Hkyk )(sk − Hkyk )

T

(sk − Hkyk )Tyk
.

2. DFP update:

Hk+1 = Hk −
Hkyky

T
k Hk

yTk Hkyk
+

sks
T
k

sTk yk
.

3. BFGS update:

Hk+1 = Hk +
(sk − Hkyk )s

T
k + sk (sk − Hkyk )

T

sTk yk
.
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Algorithm 3 A general quasi-Newton algorithm

Require: Objective f (x), initial point x0 ∈ Rn and the tolerance 0 < ε ≪ 1.
1: k := 0.
2: while stopping criteria are not satisfied do
3: Compute dk = Hkgk .
4: Compute the step length tk such that

f (xk + tk dk ) < f (xk ).

5: Compute the new approximation xk+1 := xk + tkdk
6: k := k + 1
7: Update Hk into Hk+1 such that the quasi-Newton equation Hk+1yk = sk , (sk =

xk+1 − xk , yk = gk+1 − gk ), holds
8: end while

Ensure: xk+1, f (xk+1)
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Improved Gradient Descent (IGD) methods

Our interest is a class of accelerated line search methods for solving (1) which is
based on the iterative principle

xk+1 = xk + θk tkdk , (11)

where tk is the primary step length real parameter, dk is a descent direction and
θk > 0 is an acceleration parameter.

An idea of constructing the acceleration (scaling) parameter in GD methods is
presented in
[SM] [P.S. Stanimirović, M.B. Miladinović, Accelerated gradient descent methods
with line search, Numer. Algor. 54 (2010), 503–520].

The proposed method is called SM method.

Main idea used in the SM algorithm construction is approximation of the inverse
Hessian in Quasi-Newton methods by a constant diagonal matrix:

Hk = γ−1
k I , γk ∈ R, (12)

which reduces the general QN scheme xk+1 = xk − tkHkgk into the improved gradient
descent (IGD) method with the line search, so called SM method:

xk+1 = xk − tkγ
−1
k gk (13)
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SM method

The steplength γ?k is computed using the Taylor development and tk is computed
using the backtracking line search procedure.

Computing γk .

Taylor’s approximation of the function f at the point xk+1, computed by means of the
SM method (13):

xk+1 = xk − tkγ
−1
k gk

is given by

f (xk+1) = f (xk )− tkg
T
k γ−1

k gk +
1

2
t2k (γ

−1
k gk )

T∇2f (ξ)γ−1
k gk , (14)

where ξ ∈ [xk , xk+1] is defined by

ξ = xk + α(xk+1 − xk ) = xk − αtkγ
−1
k gk , 0 ≤ α ≤ 1. (15)

Having in mind that the distance between xk and xk+1 is small enough (using the
local character of searching) we can take α = 1 in (15) and get the approximation
ξ = xk+1. Thus we obtain

∇2f (ξ) = γk+1I . (16)
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SM method

Now, from (14) and (16), the Taylor expansion of f (xk+1) becomes

f (xk+1) = f (xk )− tkγ
−1
k ∥gk∥2 +

1

2
t2kγk+1γ

−2
k ∥gk∥2, (17)

and later

γk+1 = 2γk
γk [f (xk+1)− f (xk )] + tk∥gk∥2

t2k∥gk∥2
. (18)

The condition γk+1 > 0 is ultimate. In the case γk+1 < 0 we take γk+1 = 1.

In conclusion, the SM method originated in [SM] was defined by

xk+1 = xk − tk (γ
SM
k )−1gk , (19)

where

γSM
k+1 = ℧

(
2γSM

k

γSM
k ∆k + tk∥gk∥2

t2k∥gk∥2

)
,

such that ∆k := fk+1 − fk and

℧(x) =

{
x , x > 0

1, x ≤ 0.
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SM method

Computing tk .
In order to derive an upper bound for the backtracking we analyze the function derived
from the Taylor expansion of f (xk+2) by replacing tk by a variable t:

Φk+1(t) = f (xk+1)− tγ−1
k+1∥gk∥

2 +
1

2
t2γ−1

k+1∥gk∥
2.

The function Φk+1(t) is convex in the case γk+1 > 0.

Also, it is obvious that Φk+1(0) = f (xk+1) as well as Φ′
k+1(t) = (t − 1)γ−1

k+1∥gk+1∥2.

Therefore, the function Φk+1(t) decreases in the case Φ′
k+1(t) < 0 which is true when

t ∈ (0, 1).

Finally, since
Φ′

k+1(t) = 0 ⇔ t̄k+1 = 1, (20)

the minimum of Φk+1(t) is achieved for t = 1.
Accordingly, the step size tk+1 was determined using the backtracking line search
procedure under the initial value t = 1.
Once the parameters γk+1 > 0 and tk+1 are found, the next iterative point can be
calculated as

xk+2 = xk+1 − tk+1γ
−1
k+1gk+1.
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Modified SM method

We propose two modifications of the IGD methods

xk+1 = xk − γ−1
k tkgk .

The first modification produces the class of iterations is of the general form

xk+1 = M(IGD)(xk ) = xk − γ−1
k

(
tk + t2k − t3k

)
gk , (21)

which leads to the modified IGD (MIGD) class of methods.
The main idea used in defining the iterations (21) is the replacement of the basic step
size tk in IGD methods by the new basic stepsize tk + t2k − t3k .
It is assumed that tk is defined by the backtracking procedure, which implies
tk ∈ (0, 1). As a consequence, the justification for this modification lies in the
inequalities

tk ≤ tk + t2k − t3k ≤ tk + t2k .

As a conclusion, (21) is based on a relatively smaller increase in the step length tk by
tk + t2k − t3k ∈ [tk , tk + t2k ].
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Modified SM method

Since
γ−1
k

(
tk + t2k − t3k

)
≥ γ−1

k tk ,

it follows that the MIGD iterations (21) define an appropriate increase of the step
length in the IGD class.

Obtained results are published in
[243] [B. Ivanov, P.S. Stanimirović, G.V. Milovanović, S. Djordjević, I. Brajević,
Accelerated multiple step-size methods for solving unconstrained optimization
problems, Optimization Methods and Software 36(5) (2021), 998-1029. doi:
10.1080/10556788.2019.1653868.]
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Hybrid multiple step size methods

In the second modification, we will exploit the Picard-Mann-Ishikawa hybrid iterative
process which was defined by the next three relations based on the mapping T on a
normed space  x1 = x ∈ R,

xk+1 = Tyk ,
yk = (1− αk )xk + αkTxk , k ∈ N.

(22)

The real number αk ∈ (0, 1) is denoted as the correction parameter.
Innovative class of iterations is defined by the hybrid correction of the IGD iterations,
which is defined by

xk+1 = H(IGD)(xk ) = xk − (αk + 1)γ−1
k tkgk , (23)

where αk ≥ 0 is reused from the Picard-Mann-Ishikawa hybrid iterative process.
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Accelerated multiple step size methods

Moreover, we consider the acceleration (21) and hybridization (23) incorporated in the
hybrid MIGD class (shortly HMIGD class)

xk+1 = H(MIGD)(xk ) = H(M(IGD, xk ), xk )

= xk − (αk + 1)γ−1
k

(
tk + t2k − t3k

)
gk .

(24)

Since tk ∈ (0, 1) and αk + 1 ≥ 1, it follows that

(αk + 1)γ−1
k

(
tk + t2k − t3k

)
≥ (αk + 1)γ−1

k tk ≥ γ−1
k tk ,

which means that the HIGD class (23) defines another increase of the step length in
the IGD class and HMIGD class (24) is an acceleration of HIGD iterations (23).
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IGD with fuzzy Parameters

Application of Neutrosophication Logic System (NLS) and Fuzzy Logic System
(FLS) aims to solve the indeterminacy and selectivity of the step size parameter.

An FLS utilizes a membership function (MF) T(λ) ∈ [0, 1], λ ∈ Λ in the universe Λ,
which defines the degree of membership of λ.

An intuitionistic fuzzy set (IFS) is based on membership function and non-membership
functions T (λ),F (λ) ∈ [0, 1], λ ∈ Λ, which satisfy T(λ),F(λ) : Λ → [0, 1] and are
jointly correlated by inequalities 0 ≤ T(λ) + F(λ) ≤ 1.The IFS theory was extended by

the neutrosophic theory. An element λ ∈ Λ in a neutrosophic set is characterized by
three individualistic MFs:
the truth-MF T(λ), the indeterminacy-MF I(λ), and the falsity-MF F(λ).

Due to the independence between the three MFs, the neutrosophic logic is established
on the symmetry involved in the ordered triple (T, I,F) and the inequality
0 ≤ T+ I+ F ≤ 3.

Predrag S. Stanimirović University of Nǐs, Faculty of Sciences and Mathematics, Department of Computer Sciences, Nǐs, Serbia
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IGD with fuzzy Parameters

Class of fuzzy descent direction (FDD) iterations are defined in the form

xk+1 = xk + νk tkdk , (25)

where νk is appropriately defined fuzzy parameter and the step size tk is computed
using an inexact line search.

The main idea is to improve the line search iterations xk+1 = xk + tkdk using an
additional fuzzy parameter νk .

Results are restated from
[333] P.S. Stanimirović, B. Ivanov, D. Stanujkić, V.N. Katsikis, S.D. Mourtas, L.A.
Kazakovtsev, S.A. Edalatpanah, Improvement of unconstrained optimization methods
based on symmetry involved in neutrosophy, Symmetry, 2023, 15,250, doi:
10.3390/sym15010250.
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Gradient-based algorithms for solving nonlinear optimization



IGD with fuzzy Parameters

- The general fuzzy QN (FQN) iterative scheme with the line search is defined as

xk+1 = Φ(QN)(xk )Φ(xk − Hk gk ) = xk − νkHk gk , (26)

- Fuzzy GD method (FGD) is defined by

xk+1 = Φ(GD)(xk ) = Φ(xk − tk gk ) = xk − νk tkgk . (27)

- Fuzzy SM method (FSM) is defined as

xk+1 = Φ(SM)(xk ) = xk − νk tk (γ
FSM
k )−1gk , (28)

where

γFSM
k+1 = ℧

(
2γFSM

k

γFSM
k ∆k + νk tk∥gk∥2

(νk tk )
2 ∥gk∥2

)
. (29)

- Fuzzy MSM method (FMSM) is defined by

xk+1 = Φ(MSM)(xk ) = xk − νkτk (γ
FMSM
k )−1gk , (30)

where

γFMSM
k+1 = ℧

(
2γFMSM

k

γFMSM
k ∆k + νkτk∥gk∥2

(νkτk )
2 ∥gk∥2

)
. (31)
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IGD with fuzzy Parameters

The value νk is obtained using properly defined NLS.
In general, the parameter νk should satisfy

νk


< 1, if f (xk+1) > f (xk ),

= 1, if f (xk+1) = f (xk ),

> 1, if f (xk+1) < f (xk ).

(32)

Neutrosophication. NLS maps the input ϑ := f (xk )− f (xk+1) ∈ R into
⟨ϑ : T (ϑ), I (ϑ),F (ϑ)⟩.
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Algorithm 4 Framework of FDD methods.

Require: Objective f (x) and an initial point x0 ∈ dom(f ).
1: Put k = 0, ν0 = 1, calculate f (x0), g0 = ∇f (x0), and generate a descent direction

d0.
2: If stopping indicators are fulfilled, then stop; otherwise, go to the subsequent step.
3: (Backtracking) Determine tk ∈ (0, 1] applying Algorithm 2.
4: Compute xk+1 using (25): xk+1 = xk + νk tkdk .
5: Compute f (xk+1) and generate descent vector dk+1.
6: (Score function) Compute ∆k := fk+1 − fk .
7: (Neutrosophistication) Compute T(∆k ), I(∆k ),F(∆k ) using appropriate member-

ship functions.
8: Define neutrosophic inference engine.
9: (De-neutrosophistication) Compute νk using de-neutrosophication rule.

10: k := k + 1 and go to step 2.
11: Output: {xk+1, f (xk+1)}.
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IGD with fuzzy Parameters
The truth-membership function is defined as the sigmoid membership function:

T(ϑ) = 1/(1 + e−c1(ϑ−c2)). (33)

The parameter c1 is responsible for its slope at the crossover point ϑ = c2.

The falsity-membership function is the sigmoid membership function:

F(ϑ) = 1/(1 + ec1(ϑ−c2)). (34)

The indeterminacy-membership function is the Gaussian membership function:

I(ϑ) = e
− (ϑ−c2)

2

2c2
1 . (35)

De-neutrosophication. This step assumes conversion
⟨ϑk : T (ϑk ), I (ϑk ),F (ϑk )⟩ → νk (ϑk ) ∈ R resulting into a single (crisp) value νk (ϑk ).
The following de-neutrosophication rule is proposed to obtain the parameter νk (ϑk ):

νk (ϑk ) =


3− (T (ϑk ) + I (ϑk ) + F (ϑk )) , f (xk+1) < f (xk )

1, f (xk+1) = f (xk )

1− (T (ϑk ) + I (ϑk ) + F (ϑk )) /c1, f (xk+1) > f (xk ).

where c1 ≥ 3 is defined based on the rule νk < 1 if f (xk+1) ≥ f (xk ).
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IGD with fuzzy Parameters

The settings in the NLC employed in numerical testing are arranged in Table 1.

Table 1: Recommended parameters in NLC.

Membership Function c1 c2
Truth Sigmoid function (33) 1 3
Falsity Sigmoid function (34) 1 3
Indeterminacy Gaussian function (35) 6 0
Output function (30) 3 -
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IGD with fuzzy Parameters

The membership functions values of T(∆k ),F(∆k ), I(∆k ) during the
neutrosophication process, and presented in Figure 5(a).
The NLC output value, νk (∆k ), during the de-neutrosophication process is presented
in Fig. 5(b).
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Figure 5: Neutrosophication (33), (34), (35), and de-neutrosophication (30) with parameters in
Table 1.
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Conjugate gradient methods

Nonlinear conjugate gradient (CG) methods form a class of methods for solving
unconstrained nonlinear optimization and solving system of nonlinear equations.
CG class is defined by the line search iterates xk+1 := xk + tkdk , where the search
direction dk uses a conjugate direction instead of the steepest descent direction at
each step. More precisely,

dk := d(βk , gk , dk−1)=

{
−g0, k=0,
−gk + βkdk−1, k ≥ 1,

(36)

where βk is the real value which is known as the conjugate gradient update parameter
(CGUP).
There exist a number of formulas for βk with different computational properties.
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Conjugate gradient methods

Table 2 surveys several classical CG methods, where yk−1=gk − gk−1,
sk−1=xk − xk−1, Gk−1 = ∆2f (xk−1) and ∥ · ∥ stands for the Euclidean vector norm.

Table 2: Some basic CGUP parameters.

βk Title Year

βHS
k =

yTk−1gk

yTk−1dk−1

Hestenses–Stiefel 1952

βFR
k =

∥gk∥2

∥gk−1∥2
Fletcher–Reeves 1964

βD
k =

gTk Gk−1dk−1

dTk−1Gk−1dk−1

1967

βPRP
k =

yTk−1gk

∥gk−1∥2
Polak–Ribiere–Polyak 1969

βCD
k =−

∥gk∥2

gTk−1dk−1

Conjugate Descent 1987

βLS
k =−

yTk−1gk

gTk−1dk−1

Liu–Storey 1991

βDY
k =

∥gk∥2

yTk−1dk−1

Dai–Yuan 1999
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Conjugate gradient methods

Dai and Liao in 2001 suggested the conjugate gradient (CG) iterations

xk+1 = xk + tkdk , (37)

in which tk is a positive step size parameter defined as the output of a proper inexact
line search, and dk is a descent direction generated by the recurrent rule

dk =

{
−g0, k = 0,
−gk + βDL

k dk−1, k ≥ 1,
(38)

where βDL
k is the CG coefficient that describes the type of CG method according to

the general rule

βDL
k =

gTk yk−1

dTk−1yk−1
− t

gTk sk−1

dTk−1yk−1
, (39)

wherein t > 0 is an appropriate scalar.
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Fuzzy Dai-Liao method

[352] P.S. Stanimirović, B. Ivanov, D. Stanujkić, L.A. Kazakovtsev, V,N, Krutikov, D.
Karabašević, Fuzzy adaptive parameter in the Dai–Liao optimization method based on
neutrosophy, Symmetry, 2023, 15, 1217. DOI: 10.3390/sym15061217.

The fuzzy neutrosophic Dai–Liao CG method is established as a modification of the
Dai–Liao CG method (37): xk+1 = xk + tkdk , where the search direction {dk} is
calculated by the standard definition (38):

dk =

{
−g0, k=0,
−gk + βFDL

k dk−1, k ≥ 1,

and the CG coefficient βFDL
k is defined by

βFDL
k =

gTk yk−1

dTk−1yk−1
− νk

gTk sk−1

dTk−1yk−1
, (40)

where νk is a proper fuzzy neutrosophic parameter.

Our intention is to define νk := νk (∆k ) as a function of ∆k := f (xk )− f (xk+1).
In addition, νk (∆k ) is defined subject to the constraints

0 ≤ νk (∆k ) ≤ 1. (41)

Predrag S. Stanimirović University of Nǐs, Faculty of Sciences and Mathematics, Department of Computer Sciences, Nǐs, Serbia
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Fuzzy Dai-Liao method
(1) Neutrosophication maps the input ∆k := f (xk )− f (xk+1) into neutrosophic
ordered triplets (T(∆k ), I(∆k ),F(∆k )), as in the FDD methods.
(2) De-neutrosophication is the transformation ⟨T(∆k ), I(∆k ),F(∆k )⟩ → νk ∈ R,
resulting in a crisp value νk , proposed as

νk = 2− (T(∆k ) + I(∆k ) + F(∆k )) . (42)

Table 3: Recommended parameters in NLC.

Membership Function c1 c2
Truth Sigmoid function (33) 1 3
Falsity Sigmoid function (34) 1 3
Indeterminacy Gaussian function (35) 120 0
Output function (42) - -
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