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Abstract 

 

NASICON (Na Super Ionic CONductor) type materials are an important class of solid-state 

electrolytes due to their high ionic conductivity along with decent chemical and electrochemical 

stability. In this study, a medium-entropy Li1.5Zr1.0Sn0.5Al0.5(PO4)3 (LZSAP) ceramic electrolyte 

was prepared via a solid-state synthesis method. Rietveld refinement confirmed the rhombohedral 

structure of the conventionally sintered sample (LZSAP-CS) at 1000 °C. The spark plasma 

sintering (SPS) technique was used for the densification of the pellet and resulted in ~ 2.64 times 

higher room temperature conductivity (~ 4.42 × 10−5 S cm-1) than that of the LZSAP-CS. The 

activation energy, calculated in the 30 – 100 °C range, decreased from 0.37 ± 0.01 eV for LZSAP 

to 0.31 ± 0.01 eV for LZSAP-CS. The transference number of Li+ was ~0.98, indicating that Li+ 

is the predominant charge carrier in this electrolyte. Further investigation of the lithium metal- 

electrolyte interface was conducted using a symmetric Li|LZSAP-SPS|Li cell configuration, 

demonstrating stability for over 500 h at 5 µA cm-2. LZSAP extends the list of suitable solid-state 

electrolytes for all-solid-state lithium batteries. 

Keywords: Electrochemistry, solid electrolytes, NASICON, spark plasma sintering, ionic 

conductivity. 



1. Introduction 

 

The necessity for developing clean and effective energy conversion and storage technologies is 

driven by demands for enhancing energy security, halting climate change, and improving the 

environment [1, 2]. Due to their exceptional energy and power densities, lithium-ion batteries 

significantly enhance mobility and portability in society. [3, 4]. Combustible liquid electrolytes, 

however, may pose a safety risk with conventional lithium-ion batteries [5, 6]. Solid electrolytes 

(SEs) are a viable substitute for traditional organic liquid electrolytes, effectively mitigating safety 

problems [5, 7, 8]. Moreover, high-voltage cathodes and Li metal anodes can be used thanks to 

integrating solid electrolytes, substantially boosting the energy density of all-solid-state batteries 

(ASSBs) [7, 9-12]. 

All-solid-state batteries (ASSBs) are considered promising contenders for the next generation of 

energy storage devices and attract much attention. [13-15]. Much research has focused on finding 

SEs, including inorganic conductors, organic polymer electrolytes, and organic-inorganic 

composite electrolytes [16-20]. Polymer electrolytes, which are fabricated by dissolving lithium 

salts (i.e., Lithium bis(trifluoromethane sulfonyl)imide (LITFSI), Lithium 

bis(fluorosulfonyl)imide (LiFSI), etc.) in a polymer matrix, typically show flexibility and good 

interfacial contact with the cathodes/anodes [21, 22]. Poly (vinylidene fluoride- 

hexafluoropropylene)(PVDF-HFP) and Poly (ethylene oxide) (PEO) are examples of polymer 

matrices that have been extensively explored [23-27]. Unfortunately, low Li-ion transference 

numbers (~0.3), relatively low oxidation potential, and unsatisfactory ionic conductivity 

(<10−6 S cm−1) are common drawbacks for these polymers [22, 28, 29]. 



Inorganic conductors exhibit better thermal stability and moderate ion conductivity (>10−5 S cm−1 

at RT) [30-32]. Additionally, since inorganic SEs are typically single-ion conductors, they can 

evade concentration polarization [19]. Batteries using ceramics-based inorganic electrolytes are 

well-suited for harsh operating conditions due to their inherently high elastic modulus [33-35]. Li- 

ion conducting inorganic electrolytes involving oxide-type, sulfide-type, halide-type, perovskites, 

etc., are widely documented and are good candidates for electrolytes in ASSBs [19, 31]. Among 

these, sulfur-type electrolytes possess extraordinarily high conductivities. Nevertheless, 

thiophosphate-based conductors are usually moisture-sensitive; they hydrolyze to produce 

hazardous H2S gas, and the electrochemical stability window is also restricted [36, 37]. Direct 

exposure of sulfides to lithium metal or electrode materials results in significant redox changes 

[38, 39]. To rectify these issues, coating layers or interlayer protection are necessary [39]. 

Nonetheless, capacity decline is still witnessed in most cases [40]. Oxide electrolytes typically 

exhibit greater electrochemical and moisture stability but have less ionic conductivity than 

sulfides. NASICONs (i.e., LiM2(PO4)3 where M = Zr, Ge, Sn, etc.) are intriguing electrolytes with 

a three-dimensional transport network that endows the framework with remarkable Li+ conducting 

properties [41-45]. They also exhibit excellent chemical and thermal stability. This family is one 

of the few SE classes with high lithium-ion conducting properties and outstanding 

chemical/electrochemical stability [46, 47]. 

Over the last few years, the conducting behavior of oxide-type conductors has been dramatically 

enhanced via chemical substitution or implementation of additives [48, 49]. Both the framework 

bottleneck size and the Li+ concentration were adjusted by substituting isovalent or heterovalent 

ions, and these changes affected the overall conductivity of the crystalline NaSICON-based Li+ 

electrolytes [47]. Due to the significantly lower energy barrier, lithium ions migrate via a 



coordinated process rather than the single-ion hopping mechanism typically assumed [50]. It was 

observed that increased Li+ concentration causes more coordinated migration, greatly enhancing 

lithium-ion conductivity [46, 50]. The Al-doped LiGe2(PO4)3 (LGP) and LiTi2(PO4)3 (LTP) 

materials have excellent Li+ conductivity (>10-4 S cm-1), but Ge is quite costly, and the Ti in LTP- 

based materials get reduced when it comes into contact with metallic lithium [44, 51]. On the other 

hand, LiZr2(PO4)3 (LZP), demonstrates excellent electrochemical stability with Li anode as the 

energy of the zirconium/zirconium-ion redox pair is greater than Li metal's Fermi level. However, 

it has comparatively lower room temperature (RT) ionic conductivity [45, 52, 53]. 

NASICON-type materials with multi-cations at the M-site are known to have better Li-ion 

diffusion owing to the stabilization of the rhombohedral phase at lower calcination temperatures 

[44, 48]. Due to their enhanced electrical and electrochemical performance, the high-entropy 

oxides (multiple cations at the M-site) with the NASICON framework have also drawn interest 

recently [54, 55]. One of the challenges with NASICON-structured is the anti-sintering behavior 

due to the anisotropic thermal expansion of the rhombohedral lattice during the sintering process. 

Accordingly, various techniques have such as, such as hot-press sintering, hot-isostatic press, 

microwave sintering, spark plasma sintering (SPS), etc., have been utilized to fabricate dense 

ceramics [56-59]. SPS provides notable advantages over other sintering methods, which include 

reduced processing times, lower temperatures, and, therefore, improved material properties [59, 

60]. The short holding duration is appealing for research on Li+ conductors since Li evaporation is 

unavoidable in protracted sintering processes at high temperatures, resulting in compositional 

inhomogeneities, impurity phase formation, and, consequently, reduced Li-ion conductivity [61]. 

Kobayashi et al. reported over 100 times improvement in room temperature Li-ion conductivity of 



LiTi2(PO4)3 ceramics fabricated via the SPS [62]. Similar improvements in other functional 

properties have been reported in other classes of spark plasma sintered samples [63, 64]. 

In this work, a solid-state synthesis method was used to fabricate a medium entropy (Sconfig = 

1.04R; here, R = Gas constant) Li1.5Zr1.0Sn0.5Al0.5(PO4)3 (LZSAP) sample and characterized using 

X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray 

photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) techniques. 

A dense LZSAP sample (relative density ~ 92%) fabricated using the spark plasma sintering (SPS) 

at 1000 °C showed a remarkable room temperature conductivity of 4.42 × 10−5 S cm-1. 

Additionally, the symmetric cell made using the solid electrolyte sample showed excellent stability 

in lithium plating-stripping over 500 h. 

2. Experimental Section 

 

2.1. Pellet Fabrication 

 

Polycrystalline LZSAP solid electrolyte was prepared using the traditional solid-state method. The 

materials used were lithium carbonate (Li2CO3), zirconium oxychloride octahydrate 

(ZrOCl2∙8H2O), tin oxide (SnO2), aluminum nitrate nonahydrate (Al(NO3)3∙9H2O), ammonium 

dihydrogen phosphate (NH4H2PO4). The corresponding stoichiometric amounts of these materials 

were ground manually in mortar and pestle. An excess of 10% Li2CO3 was added to compensate 

for the lithium loss. In a box furnace, the material was preheated at 600 °C for 12 h, followed by 

ball milling for 6h. After that, the powder was pressed (~150 MPa) uniaxially to make pellets (~10 

mm). The optimized sintering and calcination temperature was found by heating green ceramic 

discs at various temperatures. To reduce lithium loss during reactive sintering at temperatures 

above 950 °C, sacrificial powder was used to cover the pellets. The LZSAP samples were also 

sintered via SPS using the powders conventionally sintered at 1000 °C. Prior to SPS treatment, 



these pellets were homogenized by ball-milling them in acetone for 15 minutes at 200 rpm. 

Following drying, powders were put into a cylindrical graphite die (inner diameter of 20 mm). The 

residual graphite was eliminated using abrasive papers with grit numbers #150, #800, and finally 

#2000 to refine the sample surface, followed by decarburization at 600 °C and annealing at 800 

°C. 

 

2.2. Structural Analysis 

 

The as-prepared ceramic samples were subjected to monochromatic Cu-kα radiation (2θ range: 

10°–50°) in an Empyrean - Malvern Panalytical diffractometer to obtain X-ray diffraction (XRD) 

patterns. The XRD pattern was fitted utilizing the Rietveld refinement method with the TOPAS 

Academic (version 6) program to determine the lattice parameter and sample density [65]. 

Synchrotron XRD data for the LZSAP sample were collected over a temperature range of 50 to 

550 °C, encompassing both heating and cooling cycles at the extreme condition X-ray diffraction 

(ECXRD) Beam Line (BL-11) at the Indus-2 synchrotron source, RRCAT, India. An X-ray beam 

with a wavelength of λ = 0.7301 Å was used. With the aid of an energy-dispersive X-ray 

spectrometer (EDS) linked to the FESEM (model: JEOL-7610+), the microstructures and 

elemental percentages of the ceramic pellets were determined. The XPS analysis was performed 

using a Thermofisher Scientific - Naxsa instrument base with a monochromated Al Kα X-ray 

source (1486.6 eV). 

2.3. Electrical and Electrochemical Characterizations 

 

The electrical conductivity of samples was measured in the 1 Hz - 1 MHz frequency band using 

an LCR meter (Make: NF Corp., ZM2376). The ceramic pellets were dried at 120 °C to eliminate 

residual moisture before the EIS measurements. The flat surfaces of each ceramic disk were 

covered with a layer of silver paste. The Nyquist plots were deconvoluted employing an 



appropriate equivalent circuit model using the EIS analyzer software [66]. Applying a DC 

polarization of 0.5 V across the sample, the electronic conductivity and Li+ migration number were 

measured using chronoamperometry (Keithley Source Meter Unit: model 2450-EC). Symmetric 

Li|LZSAP|Li cells, using a ~ 1.5 mm thick SPS electrolyte, were assembled in a glovebox (H2O & 

O2: <0.1 ppm) to assess the stability of the LZSAP/Li interface. 

3. Results and Discussion 

 

3.1. Structural Analysis Results 

 

The phase evolution at various temperatures of reactive sintering was confirmed using powder X- 

ray diffraction. The XRD patterns of fabricated LZSAP-x (x = 950 °C, 1000 °C, 1050 °C, and 

SPS) are shown in Fig. 1(a). The patterns indicate minor impurity phases of aluminum phosphate, 

tin oxide, and lithium phosphate, consistent with previous findings in the literature [67, 68]. Figure 

1(b) illustrates the Rietveld refinement of the XRD data for the LZASP-1000 sample (hereafter 

referred to as LZSAP-CS). The pink-colored open circle symbols represent the experimental XRD 

data, whereas the blue-colored line displays the Rietveld refined profile. The solid grey line shows 

the difference curve, and the olive vertical bars show the calculated Bragg's peak positions for the 

space group R3̅c. The background was refined using a 12-order polynomial function, and the peak 

was modeled utilizing the pseudo-Voigt II function (simple axial model) and sample displacement 

correction. The lattice parameters of the LZSAP phase were calculated to be a = b = 8.7405(7) Å, 

c = 21.8318(2) Å, and the unit cell volume was 1444.43(3) Å3. In comparison, the lattice 

parameters for LiZr2(PO4)3 are: a = b = 8.8532(6) Å, c = 22.2531(4) Å; V = 1510.18(1) Å3. The 

effective ionic radius of the M-site for LZSAP is ∼ 0.67 Å (octahedrally-coordinated - 𝑟𝑍𝑟4+ = 0.72 

Å, 𝑟𝑆𝑛4+ = 0.69 Å, and 𝑟𝐴𝑙3+ = 0.535 Å). As a result, the volume of the LZSAP unit cell is expected 

to be lesser than that of LiZr2(PO4)3. This change in lattice parameters confirms the successful 



incorporation of Sn and Al in the unit cell. Here the values of Rwp(%) and Rp(%) are 10.663(2) and 

7.6146(3), respectively. Table 1 provides the refined atomic coordinates, occupancy, and Wyckoff 

positions within the LZSAP-CS framework. 

Fig.1. (a) RT XRD patterns at various reactive sintering temperatures in which the grey asterisk 

denotes AlPO4, orange hearts indicate Li3PO4, and brown solid circle indicate peaks 

corresponding to minor SnO2 impurity phases; (b) Rietveld refinement of RT XRD data of 

LZSAP-CS pellet. The experimental data is shown by a pink open circle; a blue line illustrates 

the fitted data; the difference is represented by a grey line and Bragg’s peak position of the 

rhombohedral R3̅c space group is denoted by olive vertical bars. 



As shown in Fig. S1(a), corner-sharing metal octahedra and phosphate tetrahedra form a crystalline 

framework with the rhombohedral (R3̅c) symmetry, generating two unique Li sites (Li1-6b, Li2- 

36f). The phosphates and MO6 polyhedra are alternated in a rhombohedral NASICON framework, 

creating 3D tunnels for better Li-ion mobility. The Li+ transportation path across the LZSAP-CS 

framework was determined using the softBV program, using the CIF derived from the Rietveld 

refinement of the XRD data [69]. The output of the BVPA algorithm, plotted using the VESTA 

program, is displayed in Fig. S1(b). The 3D-linked Li-ion migration routes in LZSAP-CS are 

depicted in this figure. 

Table 1 Various crystallographic parameters of LZSAP-CS obtained from the Rietveld 

refinement of RT powder XRD data. 

 

Site 
Wyckoff 

position 
x y z Elements Occupancy 

Li1 6b 0 0 0 Li+1 1 

Li2 36f 0 0.25 0.05 Li+1 0.0833 

Zr 12c 0 0 0.14(2) Zr+4 0.50 

Al 12c 0 0 0.14(2) Al+3 0.25 

Sn 12c 0 0 0.14(2) Sn+4 0.25 

P 18e 0.29(3) 0 0.25 P+5 1 

O1 36f 0.19(8) -0.04(9) 0.20(9) O−2 1 

O2 36f 0.18(3) 0.13(5) 0.08(7) O−2 1 

 

 

Temperature-dependent synchrotron powder XRD experiments were performed to estimate the 

thermal expansion of the LZSAP-SPS unit cell. Figure 2(a) shows the results during heating and 

cooling, from 50 to 550 °C with a temperature interval of 50 °C. Figures 2(b), 2(c), and 2(d) display 

magnified views of 2θ within the ranges 9.29°-9.72°, 14.75°-15.10°, and 23.96°-24.41°, 

respectively, as depicted in the contour plots. With the increase in temperature, there is a 



discernable shift in the 2θ positions of various peaks. For instance, the (104) peak (~ 9.45°) shifts 

toward a lower 2θ value with an increase in temperature (in the entire 50-550 °C range) and shifts 

to its original 2θ position upon decreasing the temperature back to 50 °C (Fig. 2(b)). 

Fig. 2(a) displays the temperature-dependent synchrotron XRD pattern of LZSAP-SPS during the 

50 - 500 °C heating-cooling cycle. To illustrate the reversible change in peak positions, the 

magnified view is displayed in contour plots 2(b), 2(c), and 2(d). 



To quantify the changes in lattice parameters with temperature, Rietveld refinement of the 

temperature-dependent XRD data of the LSAZP-SPS sample at all temperatures was carried out, 

and the variation of the calculated lattice parameters with temperature (in the heating cycle) is 

shown in Fig. 3. The lattice parameter ‘c’ increases, and ‘a’ decreases linearly with the increase in 

temperature. In the temperature range from 50 to 550 °C, the thermal expansion coefficients for 

‘a’ and ‘c’ are –4.28 × 10–6 and +2.07 × 10–5 K–1, respectively. The anisotropic thermal expansion 

is known to cause anti-sintering behavior in several NASICON-type ceramics. The anisotropic 

thermal expansion causes stress at the grain boundaries (GBs) among unevenly aligned grains 

during cooling from high sintering temperatures, resulting in poor densification due to cracking 

[44, 70]. 

Fig. 3. Variations in lattice parameters (a and c) of the LZSAP-SPS sample at various 

temperatures, depicted with error bars. 

SEM images of conventionally sintered (LSAZP-CS) and spark plasma sintered (LZSAP-SPS) 

samples are shown in Fig. 4. The LZSAP-CS pellet displays comparatively poor grain contact than 



the LZSAP-SPS pellet (Fig. 4(a) and 4(b)(inset)). The relative densities of LZSAP-CS and 

LZSAP-SPS pellets were ~ 82% and ~ 92%. The elements distribution of as-prepared LZSAP- 

SPS was ascertained by EDS elemental mapping (Fig. 4). The atomic % of the elements are shown 

in Table S1. The atoms Zr, Al, Sn, P, and O are homogeneously distributed among the sample, and 

there is no discernible elemental segregation in any of the samples. Further, no crack is visible in 

the SEM of LZSAP-SPS and LZSAP-CS, which may be attributed to low anisotropy in change of 

lattice parameters during cooling. Figures S2 and S3 show SEM images of LZSAP-950 and 

LZSAP-1050, respectively. 

 

Fig. 4. SEM micrographs showing the surface morphology of (a) LZSAP-CS, (b) LZSAP-SPS 

(inset shows a magnified image at 10 µm scale), and EDS mappings of Al, Zr, O, P, and Sn 

elements present in the LZSAP-SPS sample. 

The XPS spectra of Zr 3d & P 2s, Sn 3d, Al 2p, P 2p, and O 1s, along with their fitted profiles, are 

displayed in Fig. 5. The binding energy was calibrated using the hydrocarbon C 1s peak at 285 eV 

as the reference value. In Fig. 5(a), the Zr peak positions in the fitted spectrum are observed at 



185.3 & 182.8 eV, corresponding to the Zr 3d3/2 & Zr 3d5/2. The Sn(3d) spectrum can be 

deconvoluted into two peaks at 495.5 & 487.1 eV, which are attributed to Sn 3d3/2 & Sn 3d5/2, 

respectively (Fig. 5(b)). This suggests that Sn and Zr are in a tetravalent state within the electrolyte. 

The Al(2p) spectrum shows a single peak at 74.9 eV, which indicates a +3 oxidation state for Al 

(Fig. 5(c)). Similarly, P 2p1/2 and P 2p3/2 peaks at 134.53 and 133.68 eV, respectively, typically 

supporting the presence of P+5 (Fig. 5(d)). The spin-orbit splitting (j-j coupling) for Zr(3d), Sn(3d), 

and P(2p) are 2.5 eV, 8.4 eV, and 0.85 eV, respectively. It is to be noted that the absence of a 

considerable asymmetry peak in the Sn(3d) XPS for LZSAP-SPS indicates the absence of Sn+2 in 

the sample [71, 72]. Figures 5(e) display the high-resolution XPS spectra of LZSAP for the O 1s 

at 531.6 eV. 

 

Fig. 5. The fitted XPS data of (a) Zr 3d & P 2s, (b) Sn 3d, (c) Al 2p, (d) P 2p, and (e) O 1s of 

LZSAP-SPS. 

3.2. Electrical and Electrochemical Analysis Result 



Impedance spectroscopy was used to evaluate the electrolyte's kinetic properties from 1 MHz to 1 

Hz. The complex impedance spectra (Fig. 6 and S4) were recorded using silver as blocking 

electrodes, and total resistance was calculated by fitting the impedance data using EIS analyzer 

software [73]. The data observed for the conventionally sintered samples were fitted utilizing the 

corresponding equivalent circuit demonstrated in Fig. 6 inset, where Q is the constant phase 

element (subscripts ep, g, and gb represent electrode polarization, grain/bulk, and grain boundary, 

respectively), R represents the total resistance, Rg is for grain, and Rgb is for grain boundary 

resistance. Nyquist plots of LZSAP-SPS and LZSAP-1050, at high frequencies, have a single 

semi-circular arc that represents the total resistance (Fig. 6(b) and S4(b)). The occurrence of ion- 

blocking electrode polarization causes the slanted line observed in the low-frequency area. As 

illustrated in Fig. S4(a), LZSAP heated to 950 °C demonstrated the lowest total room temperature 

(RT) conductivity (6.56 × 10-8 S cm-1) among the conventionally sintered ceramics. The LZSAP- 

CS and LZSAP-950 samples displayed two overlapping semicircular arcs (Figs. 6(a) and S4(a)). 

The first arc in the lower frequency region correlates to grain boundary resistance, while the second 

arc in a relatively higher frequency region indicates grain resistance. The slanted line at low 

frequencies corresponds to the electrode contact resistance at the Ag/electrolyte interface. 

 



Fig. 6. RT Nyquist plots of (a) LZSAP-CS and (b) LZSAP-SPS with corresponding equivalent 

circuits for fitting the spectra. 

LZSAP-950 and LZSAP-CS samples had bulk conductivity of 2.31 × 10-6 S cm-1 and 4.85 × 10-5 

S cm-1, respectively, whereas the grain boundary conductivities were 9.17 × 10-7 S cm-1 and 2.55 

× 10-5 S cm-1. In comparison, the fitted total conductivity values of the LZSAP-CS and LZSAP- 

SPS samples are 1.67 × 10-5 S cm-1 and 4.42 × 10-5 S cm-1, respectively, which are both inferior to 

those of LZSAP-950 and LZSAP-1050 due to presence of impurity phases. 

Figure 7 illustrates the temperature-dependent total conductivity (σ) of LZSAP-CS and LZSAP- 

SPS. The Arrhenius equation (σ = σ0 exp (−Ea/kBT), where σ0 is the pre-exponential factor, and kB 

is the Boltzmann constant) was used to model the data. The LZSAP-SPS sample had a lower 

activation energy (Ea), around 0.31 ± 0.01 eV, compared to the LZSAP-CS sample (0.37 ± 0.01 

eV). The calculated activation energy value is within the range of values documented for fast 

lithium-ion conductors based on rhombohedral NASICON architecture [41, 74]. LZSAP-SPS 

exhibits better ionic conduction at different temperatures due to its reduced activation energy and 

better densification. The presence of pores at the grain boundaries or at triple points impedes the 

Li-ion conduction not just by increasing the overall diffusion length but also by creating localized 

inhomogeneous current densities in the vicinity of these pores [62, 75]. 



 

Fig. 7. Arrhenius plots of LZSAP-CS and LZSAP-SPS samples. 

To assess the contribution of lithium-ion to total electrical conduction in the LZSAP-SPS sample, 

a DC polarization investigation was executed with silver serving as the blocking electrode [76]. 

The current variation over time following a DC polarization of 0.5 V across the Ag|LZSAP- 

SPS|Ag pellet is shown in Fig. 8. In the NASICON ceramic electrolytes, no anionic conduction 

due to the immobile (PO4)
3- is expected to contribute to the RT conductivity due to its large size 

and strong bonding. Therefore, the current It-Ie is due to the Li-ion motion, where It stands for 

initial current (contributions from both electronic & ionic motion) and Ie for steady-state current 

(only electronic charge carriers are responsible for the steady-state current since the silver 

electrode block Li+ at the sample-electrode interface). The Li-ion transference number (tLi
+), 

calculated using the formula tLi
+ = 1-(Ie/It), was found to be around 0.98, confirming the LZSAP 

to be a predominant Li+ conductor. 



 

 

Fig. 8. Chronoamperometry profile at 0.5 V for Ag|LZSAP-SPS|Ag. 

 

A symmetric Li|LZSAP-SPS|Li battery configuration was congregated to investigate the stability 

and Li-ion migration at the lithium/electrolyte junction at RT. Figure S5 displays the Nyquist plot 

of the symmetric cell. The Li/LZSAP interfacial resistance (~ 65 kΩ) dominates the overall 

resistance of the cell, not the solid electrolyte's bulk resistance. When the symmetric battery was 

cycled at 5 µA cm−2 (Fig. 9), the overpotential increased from ~ 0.3 V for the fresh cell to ~0.5 V 

at the end of the 500th cycle. This increase in resistance indicates a continuous growth in the 

passivation layer at the Li/LZSAP interface. Upon decrimping the cycled cell, the LZSAP-SPS 

pellet's surface was darker, suggesting a chemical interaction between the Li metal and the LZSAP 

electrolyte (Fig. S6). To reduce the interfacial resistance, a lithium-alloy cushioning or organic 

polymer layer is needed to prevent direct contact between lithium metal and solid electrolyte, 

which is under investigation. 



 

 

Fig. 9. Li metal plating-stripping test of Li/LZSAP-SPS/Li symmetric cell at the current density of 

5 µA cm-2 at RT. The insets are the magnified view of the voltage profile at different periods. 

4. Conclusions 

In summary, the addition of Al3+ for Sn4+ in LiZrSn(PO4)3 preserves the Li+ conducting 

rhombohedral NASICON-framework at RT and enhances the Li-ion concentration in the unit cell. 

Temperature-dependent synchrotron XRD data confirm the anisotropic thermal expansion with a 

small decrease in the lattice parameter ‘a’ and a much increase in lattice parameter ‘c’ with 

increasing temperature. The total ionic conductivity of LZSAP-SPS at RT was 4.42 × 10-5 S cm-1 

with an associated activation energy of 0.31 ± 0.01 eV. The Li+ transference number was ~0.98, 

indicating that Li+ is the primary charge carrier in the LZSAP electrolyte. The Li/electrolyte 

junction is further studied with symmetric Li|LZSAP-SPS|Li battery testing, which showed only a 

marginal increase in the overpotential over 500 h. These findings should pave the way for further 

studies on NASICON-type electrolytes and their potential use in all-solid-state lithium batteries. 
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Fig. S1. (a) The crystal structure for LZSAP-CS and (b) Li-ion diffusion paths in the rhombohedral 

crystal structure of LSAZP-1050 are shown in three dimensions using blue isosurfaces that were produced 

using BVPA software. 

Table S1: The atomic % of the various elements from the EDS analysis. 

 

Elements (Experimental) Atomic (%) 

Sn ~ 2.6 

Al ~ 2.4 

Zr ~ 5.2 

P ~ 14.8 

O ~ 75 

 



 

Fig. S2. SEM image of LZSAP-950. 

 

 

Fig. S3. SEM image of LZSAP-1050. 



 

Fig. S4. RT Nyquist plots of (a) LZSAP-950 and (b) LZSAP-1050 with corresponding equivalent 

circuits for fitting the spectra. 

 

Fig. S5. Nyquist plot of the symmetric cell before cycling. 



 

Fig. S6. Image of lithium metal after 500 cycles. 


