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ABSTRACT 

The growing demand for sustainable energy storage positions Na-ion batteries as a compelling, 

cost-effective alternative to Li-ion technology. This study investigates the impact of phase 

engineering on structural and electrochemical behavior in the Na0.8(Mn-Fe-Ni)O2 system, 

harnessing the outstanding performance characteristics of layered oxide cathodes. Samples 

calcined at 700 °C, 800 °C, 900 °C, and 1000 °C display diverse phase compositions, including 

P and O-type phases. Rietveld refinement of X-ray Diffraction (XRD) data shows that 

increasing Ni content resulted in reduced Na-O layer spacings, compromising rate 

performance. P2/O3-Na0.8Mn0.53Fe0.14Ni0.33O2, calcined at 900 °C, achieved highest discharge 

capacity (~139 mAh g-1), followed by Na0.8Mn0.53Fe0.25Ni0.22O2, calcined at 800 °C(~134 mAh 

g-1) at 0.1C. For constant Fe content, decreasing the Ni/Mn ratio results in sloping charge-

discharge curves, indicating reduced honeycomb ordering during cycling. P2 phases formed at 

1000 °C show significant capacity retention loss. Na0.8Mn0.64Fe0.14Ni0.22O2 demonstrates the 

best overall performance, retaining over 88% of its initial capacity after 50 cycles at 0.2C. 

Operando Synchrotron XRD analysis reveals a minimal (~-1.6%) change in the c parameter 

during cycling, correlating with exceptional capacity retention. This work emphasizes the 

critical role of phase composition, metal ratios, and synthesis temperature in optimizing 

Na0.8(Mn-Fe-Ni)O2 based cathodes for high-performance Na-ion batteries. 

KEYWORDS: Na-ion batteries, layered oxides, Mn-Fe-Ni system, electrochemical 

performance, operando Synchrotron XRD 

  



1. INTRODUCTION 

The growing demand for sustainable and cost-effective energy storage solutions has generated 

significant interest in sodium-ion batteries (SIBs) as a viable alternative to lithium-ion batteries 

(LIBs). Na, being more abundant and widely distributed than Li, offers an economical and 

environmentally friendly solution for energy storage applications [1, 2]. However, developing 

high-performance cathode materials remains a critical challenge for SIBs in achieving adequate 

energy densities, cycling stability, and rate capabilities [3]. Various cathode materials have 

been explored for SIBs, such as polyanionic compounds (Na3V2(PO4)3), which provide 

excellent structural stability and high operating voltages, though their capacity remains limited 

[4, 5]. Layered transition metal (TM) oxides (NaxTMO2) are promising for SIBs, offering high 

capacity, structural flexibility, and tunable electrochemical properties [6, 7].  

Layered oxides exhibit three main structures, P2, P3, and O3, which differ in sodium-ion 

coordination and stacking sequence [8, 9]. The P2 and the P3 phases, with prismatic sites for 

sodium-ion, offer excellent sodium-ion mobility, superior rate performance, and cycling 

stability [10-13]. Yet, they may experience capacity degradation at high voltages due to 

structural transformations [14]. The O3 phase, with octahedral sodium-ion coordination, offers 

higher theoretical capacities but suffers from slower sodium-ion diffusion, limiting its rate 

performance [15, 16]. Various strategies have been proposed to improve the electrochemical 

performance of these phases, such as preparing multi-transition metal systems [17, 18], creating 

multiphasic systems [19-21], and surface modification [22, 23]. 

Single TM layered oxides are attractive cathode materials for SIBs due to their compositional 

simplicity and high theoretical capacities. Even though manganese-based layered oxides 

(NaxMnO2) can deliver discharge capacities up to 185 mAh g-1, their practical application is 

limited by the Jahn–Teller effect of Mn3+, which induces structural distortions, reduces sodium-

ion diffusivity, and degrades cycling performance, as well as the low potential of the 

Mn3+/Mn4+ redox couple, which reduces the cell voltage and overall energy density. 

Additionally, phase transitions compromise their electrochemical stability [24-26]. Similarly, 

iron-based layered oxides (NaxFeO2) are valued for their abundance, low toxicity, and 

environmental sustainability [27, 28]. However, they face significant challenges, including 

severe phase transitions during cycling, poor rate capability, and high sensitivity to air and 

moisture, which accelerate structural degradation and hinder long-term performance [28-30]. 



To overcome the limitations of single TM layered oxides, binary transition metal layered 

oxides have been developed to enhance both structural stability and electrochemical 

performance. For instance, P2-Na2/3Fe1/2Mn1/2O2 demonstrates a promising discharge capacity 

of 190 mAh g-1 within a voltage range of 1.5 – 4.3 V. But, this material experiences a phase 

transition to the OP4 structure when charged beyond 4.2 V, leading to compromised cycling 

stability [31, 32]. The high capacity is attributed to the Mn3+/Mn4+ and Fe3+/Fe4+ redox couples, 

though issues such as sensitivity to air and phase instability remain [33]. Likewise, the 

extensively studied P2-Na2/3Ni1/3Mn2/3O2 delivers a reversible capacity of 160 mAh g-1 in the 

2.0 – 4.5 V range, but charging beyond 4.2 V leads to an irreversible P2 to O2 phase transition, 

resulting in a significant volume change and reduced capacity retention [34-37]. While O3-

type NaNi1/2Mn1/2O2 achieves a higher reversible capacity of 200 mAh g-1 within the 2.2 – 4.5 

V range, the practical capacity is limited to 120 mAh g-1 in the narrower voltage range of 2.2 

– 3.8 V [38]. Despite the enhanced electrochemical performance, these binary transition metal 

oxides face challenges related to multi-step charge-discharge behavior, which affects their 

long-term cyclability [39]. 

Ternary transition metal systems provide a promising alternative, offering solid solution zones 

through strategic elemental combinations. This approach addresses the limitations of binary 

systems and enhances electrochemical performance. Layered oxides incorporating Mn, Fe, and 

Ni are particularly attractive due to their synergistic properties. Mn and Fe, being abundant, 

reduce costs, while the Ni redox couple's two-electron transfer boosts capacity. Moreover, the 

presence of Ni and Fe contributes to a higher nominal voltage, improving energy density. For 

example, NaFe1/3Ni1/3Mn1/3O2 is the most extensively studied material within the Na(Mn-Fe-

Ni)O2 system, delivering a specific capacity of 130 mAh g-1 and ~85% capacity retention after 

100 cycles [40-43]. Another representative P2-type Na2/3Fe1/3Ni1/3Mn1/3O2 material in the 

ternary system of Mn-Fe-Ni transition metals displays a specific capacity of 100 mAh g-1 and 

~75% capacity retention after 60 cycles in the 2.0 – 4.2 V range [44]. Several other cathodes 

in the Mn-Fe-Ni pseudo ternary system have been explored, such as NaMn0.5Ni0.3Fe0.1Mg0.1O2 

[45], Na0.67Ni0.1Fe0.1Mn0.8O2 [46], Na0.6Ni0.22Fe0.11Mn0.66O2 [7], Na0.9Ni0.35Fe0.2Mn0.45O2 [47], 

Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2 [45], Na0.67Ni0.15Fe0.35Mn0.5O2 [48]. Additionally, biphasic 

systems with P2/O3, P2/P3, and ternary phase combinations promise high-voltage stability and 

prolonged cycle life [21, 49, 50]. Despite numerous studies, optimization of the metal ratios 

and understanding the influence of calcination temperatures on phase evolution is crucial for 

unlocking the full potential of these ternary systems. This study focuses on the phase 

composition, structural characteristics, and electrochemical performance of Na0.8(Mn-Fe-



Ni)O2 cathodes selected from a pseudo ternary diagram (Fig. 1) and synthesized at different 

calcination temperatures (700 °C, 800 °C, 900 °C, and 1000 °C). The research emphasizes the 

role of phase fractions, transition metal ratios, and lattice parameters in determining the 

material's performance. 

 

Fig. 1. Compositions in the Na0.8(Mn-Fe-Ni)O2 pseudo-ternary system and their 

abbreviations studied in this work. 

The primary objective of this work is to identify compositions within the Na0.8(Mn-Fe-Ni)O2 

(MFN) system that exhibit a stable structure, high nominal voltage to enhance energy density, 

and minimal capacity fading upon cycling. Although numerous studies have investigated the 

effects of varying Mn and Ni transition metals on the structural and electrochemical properties 

of layered oxides, this study specifically explores the influence of the Mn/Ni ratio while 

maintaining a constant Fe content. To examine the impact of the Ni/Mn ratio on the structural 

and electrochemical properties, additional characterization was conducted on MFN-C, MFN-

D, and MFN-E, all synthesized at 800 °C. MFN-D showed superior performance across all 

calcination temperatures, retaining over 88% of its initial capacity after 50 cycles. Advanced 

characterization techniques, such as operando Synchrotron studies, correlate structural 

properties and strain to electrochemical stability. These findings provide critical insights into 

the design of high-performance cathode materials and the advancement of sodium-ion battery 

technology. 

2. MATERIALS AND METHODS 



All compositions within the pseudo-ternary Na0.8(Mn-Fe-Ni)O2 diagram were synthesized 

using a sol-gel method. Na2CO3 (SRL, 99.9%), C4H6MnO4·4H2O (Sigma-Aldrich, >99%), 

Fe(NO3)3·9H2O (Rankem. 98%), and C4H6NiO4·4H2O (Sigma-Aldrich, 98%) were measured 

in stoichiometric amounts and mixed in deionized water. This mixture was stirred for 8 hours, 

followed by the addition of citric acid (C6H8O7) as a chelating agent and ethylene glycol 

(C2H6O2) as a gelling agent. The resulting solution was continuously stirred to form a 

homogeneous mixture, which was then heated to form a gel. The gel was dried and 

subsequently subjected to heat treatment at 550 °C, followed by calcination at 700 ℃, 800 ℃, 

900 ℃, and 1000 ℃ in a muffle furnace under ambient air. After calcination, the products were 

allowed to cool naturally and then transferred to an argon-filled glove box to prevent moisture 

contact from the air. 

Phase identification was performed by X-ray Diffraction (XRD) using an Empyrean instrument 

from Malvern Panalytical with Cu-Kα radiation. The XRD data were collected over a 2θ range 

of 10-70° with a step size of 0.01° and analyzed using Rietveld refinement with Topas 

academic software (version 6) [51]. Morphological studies of the samples were conducted 

using field emission scanning electron microscopy (FESEM) with a JEOL-7610 model. Energy 

dispersive X-ray spectroscopy (EDS) was employed to investigate the elemental distribution 

within the samples. X-ray photoelectron spectroscopy (XPS) using a Thermo Fisher Scientific 

instrument with a 1486.6 eV (Al Kα) X-ray source was utilized to determine the oxidation 

states of elements in the cathode materials. 

The positive electrodes were prepared by coating a slurry composed of 75% active material, 

10% Ketjen black, and 15% polyvinylidene fluoride (PVDF) binder in N-methyl-2-pyrrolidone 

(NMP) solvent. This slurry was coated to an aluminum (Al) current collector, dried under 

vacuum, and then punched into 14 mm discs to achieve an active material loading of 3-4 mg 

cm-2 and an apparent active mass density of ~ 1.5-2.0 g cm-3. CR2032 coin cells were 

assembled in an argon-filled glove box, using the prepared electrodes along with sodium metal 

as the negative electrode. The electrolyte used was 1M NaClO4 in a 1:1 mixture of ethylene 

carbonate (EC) and propylene carbonate (PC), with Whatman GF/D as the separator. 

Galvanostatic charge-discharge (GCD) experiments were conducted at various current 

densities using a Neware battery tester (Model CT-4008T). The same equipment was used to 

perform the galvanostatic intermittent titration technique (GITT) and calculate the diffusion 

coefficient of Na-ions in the cathode material. The phase transformations that occurred during 

electrochemical cycling were investigated by operando studies carried out using extreme 



conditions-angle dispersive/energy dispersive synchrotron X-ray diffraction (Beamline 11) at 

Indus-2 beamline Raja Ramanna Centre for Advanced Technology (RRCAT) with a beam 

wavelength of 0.7313 Å and beam energy of 2.5 GeV. The coin cells for the operando studies 

were prepared by drilling 3 mm holes in the CR2032 coin-cell casing to allow the beam to pass 

through the cell. A Kapton tape was used to cover the drilled holes in coin cell casings to 

prevent environmental exposure. 

3. RESULTS AND DISCUSSION 

3.1. Structural characterization 

3.1.1. X-ray diffraction 

To investigate the temperature-dependent phase behavior of selected compositions in the 

Na0.8(Mn-Fe-Ni)O2 system, the samples were calcined at four temperatures – 700 °C, 800 °C, 

900 °C, and 1000°C - resulting in varying amounts of the P2, P3, and O3 phases (Fig. 2). Table 

S1 (Supplementary material) summarizes the phase fractions obtained for all compositions at 

different calcination temperatures. The fractions of various phases present in each sample were 

quantified through Rietveld refinement of XRD data. The XRD results in Figs. S1-S4 revealed 

that all peaks corresponded to the Bragg positions of the O3, P3, and P2 phases, except for 

MFN-C calcined at 1000 °C, which contained trace amounts of NiO. The P3 phase was 

observed in all samples calcined at 700 °C, which aligns with previous studies showing that 

lower calcination temperatures favor P3 phase formation [52-54].  

Moreover, compositions with a higher Fe/Mn ratio have a higher tendency to form the O3 

phase, consistent with earlier reports [13]. There is also a noticeable correlation between Mn 

content and phase composition. As the Mn content increases, the samples show a mix of P2 

and P3 phases, with trace amounts of O3. This can be explained by the lower electronegativity 

of Mn (1.55 on the Pauling scale) compared to Fe (1.83) and Ni (1.91), which increases the 

repulsion between oxygen ions and promotes the formation of prismatic sites over octahedral 

sites.  

The phase diagram at 800 °C (Fig. 2(b)) indicates that the P2 phase becomes more stable as the 

calcination temperature increases, supporting previous studies [13]. The transition from P3 to 

P2 requires the breaking of TM─O bonds, which necessitates sufficiently high temperatures. 

A correlation between phase structure and Ni content was also observed, with a Ni content of 

0.33 favoring the formation of the P3 and O3 phases alongside the dominant P2 phase at 800 

°C. On increasing the calcination temperature to 900 °C and 1000 °C, the P2 phase becomes 



dominant, although trace amounts of the O3 phase persist in some low-Mn compositions. This 

is due to the Na content being 0.8, which is near the threshold for stabilizing low-Na O3 phases. 

This analysis indicates that the phase stability in these systems is highly dependent on the 

careful balance of Fe, Mn, and Ni content, with different phases favored under specific 

compositional and temperature conditions. 

 

Fig. 2. Fractions of the P3, P2, and O3 phases in MFN samples calcined at (a) 700 ℃, (b) 

800 ℃, (c) 900 ℃, and (d) 1000 ℃. 

The Rietveld refinement of the XRD data shows that the P2, P3, and O3 phases correspond to 

the P63/mmc, R3m, and R3̅m space groups, respectively (Figs. 3, S5-S7). The refined lattice 

parameters are detailed in Tables S2–S5. The evolution of the c parameter in the Na0.8(Mn-Fe-

Ni)O2 system is primarily influenced by the concentrations of Mn, Ni, and Fe, with each 

element contributing uniquely to the structure at different calcination temperatures.  

At 800 °C, the c parameter shows straightforward trends. An increase in Ni content results in 

a consistent decrease in the c parameter, which is contrary to the expected increase, given that 



the ionic radius of Ni2+ in six-coordination (0.69 Å) is larger than that of Mn3+ (0.58 Å), Mn4+ 

(0.53 Å), and Fe3+ (0.55 Å). Along the constant Ni lines, an increase in the Mn/Fe ratio leads 

to a corresponding increase in the c parameter. This suggests that the effects of the higher 

electronegativity of transition metal ions on the lattice parameters are more significant than the 

effects of larger ionic radii in these samples.  

 

Fig. 3. (a) Rietveld refined patterns of MFN samples calcined at 800 ℃, (a1) Magnified view 

of the most intense peak of P3, P2, and O3 phases. (b) Schematic of P3, P2, and O3 crystal 

structure. 



At 700 °C, the c parameter exhibits complex behavior with varying Ni content. The c parameter 

first increases and then decreases as Ni content decreases. At 900 °C, the influence of transition 

metals is more complex. Decreasing Ni content results in an increase in the c parameter, but 

along constant Ni lines, increasing the Mn/Fe ratio reduces it. At 1000 °C, as Ni content 

decreases, the c parameter consistently increases. For constant Ni, the c parameter increases 

with a rise in the Mn/Fe ratio.  

Overall, the lattice parameter behavior of the Na0.8(Mn-Fe-Ni)O2 system is highly dependent 

on the interplay between Fe, Mn, and Ni content, with the c parameter demonstrating distinct 

variations influenced by compositional changes at each calcination temperature. Mn generally 

promotes an increase in the c parameter, while the influence of Fe and Ni depends more on 

their relative concentrations and the overall temperature, indicating a complex dependence of 

lattice parameters on transition metal ratios in this layered oxide system. Detailed refinement 

parameters for all samples are provided in Tables S6-S33 (Supplementary material). 

3.1.2. Scanning electron microscopy 

The morphology of MFN-C, MFN-D, and MFN-E samples on the constant Fe line was 

analyzed using FESEM, and the corresponding SEM micrographs are presented in Figs. 4, S8, 

and S9. The images reveal that the particles exhibit a flat, plate-like morphology. While the 

average particle size ranges between 1.5 µm and 1.8 µm, MFN-C displays a broader 

distribution, with particles varying from 0.5 to 2.4 µm. Increasing the fractions of Fe and Mn 

typically results in larger, less agglomerated particles, as observed in MFN-D and E. In 

contrast, Ni-rich systems tend to produce smaller particles, as Ni enhances nucleation rates due 

to faster diffusion. Consequently, MFN-C, with a higher Ni/Mn ratio, includes particles as 

small as 500 – 600 nm.  

The mixed particle morphology in MFN-C, characterized by both large and small particles, 

would present significant challenges. During slurry preparation, the size disparity between 

particles leads to non-uniform dispersion, with smaller particles dispersing homogeneously 

while larger particles tend to settle. This heterogeneity becomes more pronounced during the 

coating process, resulting in a non-uniform distribution of active material in the cathode, which 

detrimentally affects electrochemical performance. Therefore, balancing the Ni/Mn ratio is 

critical for controlling the morphology of layered oxides, which directly impacts their 

electrochemical performance. The EDS mapping in Figs. 4, S8, and S9 confirms that all 

elements are homogeneously distributed throughout the sample, confirming that the observed 



variations in morphology and particle size are intrinsic to the material composition rather than 

due to elemental segregation. 

 

Fig. 4. (a) SEM micrograph of MFN-C sample calcined at 800℃. (b) EDS mapping 

indicating uniform distribution of constituent elements. 

3.1.3. X-ray photoelectron spectroscopy 

The oxidation states of Mn, Fe, and Ni in MFN-C, MFN-D, and MFN-E were verified using 

XPS, as shown in Fig. 5. The Mn 2p spectrum for MFN-C exhibits two distinct peaks at ~642.6 

eV and ~653.7 eV, corresponding to Mn 2p3/2 and Mn 2p1/2, respectively. These binding energy 

values confirm the presence of Mn in the tetravalent state (Mn4+) in MFN-C. As the Ni/Mn 

ratio decreases, the Mn spectra can be deconvoluted into four peaks: two associated with Mn3+ 

(Mn 2p3/2 at ~641.2 eV and Mn 2p1/2 at ~651.9 eV) and two corresponding to Mn4+ (Mn 2p3/2 

at ~642.6 eV and Mn 2p1/2 at ~653.7 eV) [43, 55, 56]. Also, the Mn3+/Mn4+ ratio increases from 

MFN-D to MFN-E. The Fe 2p spectrum displays two characteristic peaks at 710.7 eV and 

724.2 eV, indicating the presence of Fe3+ ions in all samples [43, 55, 56]. Similarly, the Ni 

spectrum reveals peaks at 854.4 eV (Ni 2p3/2) and 872.1 eV (Ni 2p1/2), along with their 

associated shake-up satellites, confirming the presence of Ni in the divalent state (Ni2+) in all 

samples [43, 55, 56]. 



 

Fig. 5. Mn 2p spectra, Ni 2p spectra, and Fe 2p spectra of the MFN-C, D, and E samples. ♦ 

represents the shake-up satellite peaks in the Fe 2p and Ni 2p spectra. 

3.2. Electrochemical characterization 

3.2.1. Galvanostatic charge-discharge 

The effects of phases and structural parameters on electrochemical performance were evaluated 

by testing all MFN samples in the 2.5 – 4.4 V range. The electrochemical properties for all 

calcination temperatures are summarized in Tables S34-S37. The voltage window (2.5 – 4.4 

V) is chosen to investigate the effects of high voltage redox processes, namely the Ni2+/Ni4+ 

and the Fe3+/Fe4+ reactions, on the electrochemical properties. The GCD profiles at 0.1C are 

illustrated in Figs. 6(a) and S10-S12(a), with the corresponding dQ/dV vs. V curves represented 

in the pseudo-ternary diagrams in Figs. 6(b) and S10-S12(b).  

Some important trends can be seen in the GCD curves for all calcination temperatures, such as 

the GCD profiles becoming more sloping, with the plateaus above 3.2 V merging together with 

increasing Fe content. This indicates that an increase in Fe content results in a solid solution 

reaction and the absence of Na+/vacancy ordering upon sodiation/desodiation [43, 57]. Such 

behavior underscores the role of Fe in promoting homogeneous electrochemical reactions, 

minimizing phase transitions, and enhancing structural reversibility during cycling. Further, 

the specific capacity at 0.1C decreases as the Ni content decreases. The highest discharge 

capacity of 139.1 mAh g-1 was delivered by the Na0.8Mn0.53Fe0.14Ni0.33O2 material when 

calcined at 800 ℃, while the lowest capacity at this calcination temperature is found for Na0.8 

Mn0.75Fe0.14Ni0.11O2 (89.7 mAh g-1). 



The dQ/dV curves undergo significant changes with variations in composition. The main redox 

peaks observed are peaks near 3.2 – 3.8 V (common for Ni2+/Ni4+) [34, 35], and peaks above 

4.1 – 4.2 V (may be attributed to Fe3+/Fe4+) [33]. These peak attributions are well-established 

in the literature [7, 45-48]. Figs. 6(b) and S10-S12(b) demonstrate that the redox activity in 

Na0.8(Mn-Fe-Ni)O2 cathodes is highly dependent on the composition. For instance, the 

Ni2+/Ni4+ redox peaks grow with increasing Ni contents. The dQ/dV curves for MFN-G and 

MFN-F, with the least amount of Fe, show multiple peaks corresponding to Na-ion/vacancy 

ordering rearrangements that occur during cycling in accordance with the GCD results. Also, 

for compositions on the constant Fe lines, a decreasing Ni/Mn ratio makes the dQ/dV curves 

smoother, which corresponds to fewer phase transitions during electrochemical cycling and 

thereby leads to better cyclability. Interestingly, for certain compositions, such as MFN-A and 

MFN-D, the dQ/dV curves for samples calcined at lower calcination temperature (700 ℃) have 

several peaks that become smooth as the calcination temperature increases to 1000 ℃. At ~4.3 

V, high-voltage peaks are found for all compositions, which are commonly found for layered 

oxides. Several processes can contribute to this peak, e.g., phase transformations [58, 59], 

formation of new phases [3, 37, 39, 60], or contributions from anionic redox of lattice oxygen 

(𝑂2−  →  𝑂2
− ) [61, 62]. 

The average voltage is a key parameter influencing the overall energy density of the cathode 

material. For layered oxide cathodes, the average discharge voltage generally ranges from 2.3 

to 3.5 V [63]. Cathodes containing high-voltage redox-active transition metals, such as Ni and 

Fe, tend to exhibit higher average voltages. The average voltage values of the MFN samples 

calcined at various calcination temperatures are given in Tables S34-S37. Among the samples 

calcined at 800 °C, MFN-D, MFN-G, and MFN-A exhibit average discharge voltages of 3.6 

V, 3.54 V, and 3.48 V, respectively. The high specific capacities of MFN-A (134.2 mAh g-1) 

and MFN-D (127.3 mAh g-1), combined with their elevated average discharge voltages, 

contribute to high specific energies. As a result, the energy densities of these cathodes approach 

460 Wh kg-1 at the cathode active material level.  

3.2.2. Rate performance 

Figs. 6(c) and S10-S12(c) display the rate capabilities of MFN samples at various C-rates in 

the 0.1C to 5C range. The percentage capacity retention at 0.2C and 1C compared to 0.1C is 

summarized in Tables S34-S37. Significant variations in rate performance are attributed to the 

distinct local environments created by varying transition metal ratios and the effects of 

calcination temperature, which influence the degree of particle agglomeration and average 



particle size in these samples. The materials synthesized at 700 ℃ and 800 ℃ exhibited 

superior rate capabilities, demonstrated by higher capacity retention at both 0.2C and 1C. The 

superior rate capability is attributed to reduced particle agglomeration and smaller particle 

sizes, facilitating more efficient ion transport. Most samples retained above 80% of their initial 

capacity at 0.2C, while capacity retention at 1C ranged from 51% to 74%.  

 

Fig. 6. (a) Galvanostatic charge-discharge curves at 0.1C, (b) dQ/dV vs. V profiles, (c) rate 

performance, and (d) cyclic stability of MFN samples calcined at 800 ℃. 



At higher synthesis temperatures of 900 ℃ and 1000 ℃, a noticeable decline in rate 

performance was observed compared to lower temperatures. At 900 ℃, retention at 0.2C 

dropped to 77 – 84%, while at 1C, capacity retention fell significantly to 36 – 52%. The 

capacity depletion at higher C-rates became more pronounced at 1000 ℃, with capacity 

retention at 1C plummeting to 10% for MFN-B. Despite the decline, MFN-D outperformed 

other samples at 1C, though its rate capability remained significantly lower than those 

synthesized at 700 ℃ or 800 ℃. The overall trend reveals that higher calcination temperatures 

(900 °C and 1000 °C) significantly increase particle agglomeration, severely limiting Na+ 

diffusion and degrading rate performance. This underscores the critical role of particle size and 

agglomeration in determining the electrochemical behavior of these materials. 

3.2.3. Cyclability 

The cyclability of MFN samples at 0.2C is presented in Figs. 6(d) & S10-12(d) and summarized 

in Tables S34-S37. Additionally, the cycling performance of MFN-C, D, and E samples 

calcined at 800 °C was further evaluated at 1C, and the results are shown in Fig. S13. Higher 

capacity retention in samples synthesized at lower calcination temperatures can be attributed 

to reduced agglomeration and optimal particle sizes, which preserve the structural integrity. 

Among the samples, MFN-D exhibited superior cyclability across all synthesis temperatures, 

retaining over 88% of its initial capacity after 50 cycles at 700 °C and 800 °C. This performance 

underscores its exceptional structural stability. An increased Ni/Mn ratio along constant Fe-

content lines resulted in higher specific capacities but compromised cyclic stability, 

particularly for samples calcined at higher temperatures. For example, MFN-C exhibited 

excellent cyclic performance at lower synthesis temperatures but experienced significant 

degradation at 900 °C and 1000 °C. Conversely, with a low Ni/Mn ratio, MFN-E exhibited 

decent cycling stability at 900 °C. At 1C, the capacity retention for MFN-C, D, and E calcined 

at 800 °C was 76%, 89%, and 81%, respectively, further confirming the excellent superior 

high-rate cycling stability of MFN-D. Overall, a higher Ni/Mn ratio enhances the specific 

capacity, a lower ratio improves structural stability (consequently, cyclic performance), and 

diminishes the rate performance, particularly for the P2 phases formed at higher calcination 

temperatures. This trade-off makes materials with a low Ni/Mn ratio better suited for 

applications requiring long-term stability and lower rates of discharge, such as in grid storage 

or backup power systems. MFN-D, with its balance of high capacity and stability, is more 

suited for high-power applications like electric vehicles and portable electronics, where both 

performance and durability are crucial. 



3.2.4. Galvanostatic intermittent titration technique 

The sodium-ion diffusion coefficient (DNa+) was evaluated using the galvanostatic intermittent 

titration technique (GITT). The GITT curves and corresponding diffusion coefficient values 

for MFN-C, MFN-D, and MFN-E are shown in Fig. 7. Prior to the GITT measurements, the 

cells underwent the initial formation cycle. For the GITT measurements, cells were subjected 

to a constant current pulse at 0.1C for 10 minutes, followed by a 30-minute relaxation period 

to allow the cathodes to reach a pseudo-equilibrium state. The diffusion process is assumed to 

adhere to Fick’s first law of diffusion. The DNa+ values are calculated using the following 

equation (1) [64]: 

𝐷𝑁𝑎+ = 4
𝜋𝜏

(𝑚𝐵𝑉𝑚
𝑀𝐵𝑆

)
2

(∆𝐸𝑆
∆𝐸𝜏

)
2

         (𝑡 ≪ 𝐿2 ∕ 𝐷)               ……………(1) 

where: 

● τ is the duration of the constant current pulse, 

● mB is the active material loading on the cathode, 

● Vm is the molar volume of the material, 

● MB is the molecular weight of the material, 

● S is the surface area of the cathode, 

● ΔEτ is the voltage change during the current pulse, 

● ΔES is the voltage change when the material reaches equilibrium. 

 

Fig. 7. GITT profiles of (a) MFN-C, (b) MFN-D, and (c) MFN-E at 0.1C, along with the 

variations in diffusion coefficients during charge-discharge. (d) A single titration unit of the 

GITT curve showing the variables considered in Equation 1. 



Analysis revealed that the diffusion coefficients are higher in the better-performing MFN-D 

sample. Fig. 7 shows that the Na-ion diffusion coefficient has lower values at higher voltages 

when the cathode contains fewer Na-ions, indicating slower kinetics at these voltages. This 

highlights the advantage of the optimal Ni/Mn ratio in enhancing electrochemical performance. 

3.2.5. Operando Synchrotron XRD 

The structural stability of the samples was confirmed using operando Synchrotron XRD 

measurements during cycling. Synchrotron XRD patterns were recorded for MFN-D and MFN-

E cathodes at a charge/discharge rate of 0.2C in the 2.5 – 4.4 V voltage range, as shown in 

Figs. 8(a) and S14(a). The corresponding galvanostatic charge-discharge (GCD) profiles are 

shown in Figs. 8(b) and S14(b), while contour maps highlighting selected 2θ regions extracted 

from the operando XRD data are presented in Figs. 8(c-e) and S14(c-e). During charging, the 

(002) and (004) diffraction peaks of the P2 phase shift towards lower angles, attributed to the 

lattice expansion along the c-direction due to increased electrostatic repulsion between the 

layers. The P2 (100) peak at 2θ ≈ 16.6° and the P2 (102) peak at 2θ ≈ 18.3° shift to higher 

angles, indicating a contraction of the a-lattice parameter in the P2 phase for both samples. 

Upon discharge, all diffraction peaks return to their initial positions, with no new peaks 

observed during the charge/discharge process.  

P-type layered compounds are well known to undergo a P-to-O phase transition at high states 

of charge, which induces severe irreversible structural degradation over long-term cycling [65-

67]. In conventional P2-type cathode materials, this transition typically occurs above 4.2 V, 

forming a metastable O2 phase that facilitates the gliding of transition metal TM slabs and 

subsequent structural distortion. Studies have demonstrated that strategic cation substitution 

can alter this transformation pathway, enabling a P2-to-OP4 transition instead. The OP4 phase 

exhibits reduced lattice contraction, offering improved structural reversibility. Despite its 

reversibility, repeated P2-to-OP4 transitions introduce cumulative strain, potentially 

accelerating structural failure, as any formation of an O-type layer in a P2-phase cathode 

inherently induces lattice contraction. In MFN-D and MFN-E, the optimized TM ratios 

effectively suppress high-voltage phase transitions of the P2 phase. However, subtle structural 

changes are observed beyond 4.2 V, where the (004), (100), and (102) diffraction peaks 

broaden and weaken until the end of charge (highlighted by thick lines in the operando XRD 

patterns, Figs. 8(a) and S14(a)). This suggests a degree of structural modification without the 

emergence of a distinct new phase [68, 69]. Notably, in MFN-E, the P2 diffraction peak 



broadening and weakening occur at a significantly lower voltage (~3.1 V) than in MFN-D, 

indicating an earlier onset of structural alteration in MFN-E.  

The lattice parameter variations during charge/discharge were quantified using LeBail 

refinement of the operando Synchrotron XRD data at different voltages. The trends in the a 

and c parameters are illustrated in Figs. 8(f, g) and S14(f, g). The evolution of the c parameter 

follows the well-established behavior of layered oxides, characterized by expansion and 

contraction along the c axis during charging and discharging, respectively [36, 70]. The change 

in the c parameter (∆𝑐 =  𝑐4.4𝑉−𝑐2.5𝑉
𝑐4.4𝑉

× 100%) of the P2 phase is ~ −1.6% in MFN-D and ~ 

−2.0% in MFN-E during discharging from 4.4 V to 2.5 V. A well-balanced ratio of transition 

metals combined with structural benefits in MFN-D supports superior structural integrity, 

contributing to excellent capacity retention in this material. 



 

Fig. 8. (a) Operando synchrotron XRD patterns of MFN-D. (b) The corresponding GCD 

curve showing various states of charge/discharge. Color contour maps highlighting (c) (002), 

(d) (100), and (e) (102) peaks of the P2 phase of MFN-D. Variation in (f) a parameter and (g) 

c parameter of the P2 phase during charge/discharge. 

The structural stability of the MFN-D and MFN-E samples was further evaluated by subjecting 

them to ambient air exposure for 30 days. Comparative analysis of the XRD patterns before 

and after exposure showed no observable changes (Figs. S15 and S16). This demonstrates the 



exceptional moisture stability of these materials, enabling their storage under ambient 

conditions, thereby reducing the fabrication cost of cells. 

3.3. Key design insights for high voltage Na-ion cathodes 

The findings of this study offer valuable insights into the design of high-voltage Na-ion 

cathodes, emphasizing the critical influence of transition metal composition and particle 

morphology on structural and electrochemical performance. Precise control over the Ni/Mn 

ratio modulates the balance between redox activity and structural robustness, thereby acting as 

an essential design parameter for simultaneously optimizing specific capacity, rate capability, 

and cycling stability. Higher Ni content promotes higher specific capacities through enhanced 

redox activity at elevated voltages, while Mn contributes to structural stability. The calcination 

temperature also plays a pivotal role, with lower temperatures (700 – 800 °C) yielding superior 

rate capability and cycling stability due to reduced particle agglomeration and optimal particle 

sizes. Furthermore, the dominance of the P2 phase facilitates rapid Na-ion diffusion through 

prismatic sites, enhancing electrochemical kinetics. Electrochemical characterization revealed 

that reducing the Ni/Mn ratio along constant Fe lines improves structural stability and cycling 

performance at the cost of specific capacity and high-rate performance. To provide a 

consolidated overview of these trends, a comparative bar graph is presented in Fig. S17, which 

visually summarizes the variation in specific capacity, rate performance, and cycling stability 

across MFN compositions at different calcination temperatures. Overall, P2-type 

Na0.8Mn0.64Fe0.14Ni0.22O2, calcined at 800 °C, is identified as the optimal composition that 

exhibits excellent electrochemical performance as a cathode material for sodium-ion batteries. 

4. CONCLUSIONS 

This study systematically explores the effects of calcination temperature and transition metal 

composition on the structural, morphological, and electrochemical properties of Na0.8(Mn-Fe-

Ni)O2 layered oxides, aiming to establish an optimized framework for cathode design for 

sodium-ion batteries.  

• XRD data revealed that the calcination temperature plays a critical role in determining 

the phase composition of the material. At lower temperatures (700 °C), the P3 phase 

dominates, particularly in Fe- and Mn-rich compositions. However, as the calcination 

temperature increases to 800 °C and beyond, a clear preference toward the P2 phase is 

observed. The Fe-rich compositions favor the O3 phase, while Mn-rich samples 



promote the coexistence of P2 and P3 phases due to repulsion between oxygen ions and 

promoting the formation of prismatic sites.  

• The lattice parameters reveal that increasing Ni content causes a decrease in the c 

parameter, while higher Mn and Fe expand it.  

• The FESEM analysis reveals that Ni-rich samples exhibit particles ranging from 500 

nm to 2.4 µm, whereas Fe/Mn-rich samples show larger, less agglomerated particles.  

The electrochemical studies unveiled the following trends: 

• Materials with higher Ni content showed higher specific discharge and average 

voltages, leading to elevated specific energies (~460 Wh kg-1 at the cathode active 

material level). 

• The highest discharge capacity of ~139 mAh g-1 was achieved by the 

Na0.8Mn0.53Fe0.14Ni0.33O2 sample calcined at 800 °C, followed by 

Na0.8Mn0.64Fe0.14Ni0.22O2 (124.5 mAh g-1 at 0.1C),  while the lowest capacity (89.7 mAh 

g-1) was observed for the Na0.8Mn0.75Fe0.14Ni0.11O2 sample.  

• As the Fe content increases, the GCD profiles become more sloping, indicating that 

higher Fe content fosters a solid solution reaction mechanism, suppressing the 

Na⁺/vacancy ordering usually observed during sodiation/desodiation. For compositions 

along constant Fe-content lines, a decrease in the Ni/Mn ratio results in smoother GCD 

and dQ/dV curves, resulting in enhanced cyclability. 

• Samples calcined at 700 °C and 800 °C exhibited much better rate capabilities, retaining 

over 80% of their capacity at 0.2C and 51% – 74% at 1C.  

• In contrast, samples calcined at 900 °C and 1000 °C showed a significant decline in 

capacity retention, with some compositions retaining as low as 10% of their initial 

capacity.  

• Na0.8Mn0.64Fe0.14Ni0.22O2 demonstrated the best performance across all calcination 

temperatures, with high capacity retention and excellent cyclability, retaining more than 

88% of its initial capacity after 50 cycles.  



The synchrotron XRD analysis revealed the absence of phase transitions in the MFN-D and 

MFN-E samples calcined at 800 °C during cycling, which contributes to enhanced structural 

stability. Quantification of the change in the c parameter reveals that Na0.8Mn0.64Fe0.14Ni0.22O2 

experiences less strain during charge/discharge, which directly correlates with its higher 

capacity retention and better electrochemical performance. These findings underscore the 

pivotal role of optimizing transition metal ratios and calcination temperature to achieve desired 

structural and electrochemical properties, paving the way for improved energy storage 

solutions. 
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Table S1 Fractions (in %) of P3, P2, and O3 phases at different calcination temperatures in 

MFN samples. 

Calcination 
Temperature  700 °C 800 °C 900 °C 1000 °C 

Composition P3 P2 O3 P3 P2 O3 P3 P2 O3 P3 P2 O3 

MFN-A 46 
± 3 - 54 

± 3 - 67 
± 1 

33 
± 1 - 84 

± 2 
16 
± 2 - 100 - 

MFN-B 49 
± 3 

51 
± 3 - - 100 - - 100 - - 100 - 

MFN-C 67 
± 2 - 33 

± 2 
22 
± 4 

39 
± 4 

39 
± 4 - 64 

± 2 
36 
± 2 - 37 

± 2 
59 
± 2 

MFN-D 74 
± 3 

26 
± 3 - - 100 - - 100 - - 100 - 

MFN-E 23 
± 1 

75 
± 1 

2 ± 
1 - 98 

± 1 
2 ± 
1 - 98 

± 1 
2 ± 
1 - 100 - 

MFN-F 72 
± 1 

26 
± 1 

2 ± 
1 

18 
± 7 

77 
± 2 

5 ± 
2 - 95 

± 2 
5 ± 
2 - 100 - 

MFN-G 64 
± 1 

34 
± 1 

2 ± 
1 - 98 

± 1 
2 ± 
1 - 98 

± 1 
2 ± 
1 - 100 - 
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Table S2 Lattice parameters of the MFN samples calcined at 700 ℃ obtained from the Rietveld 

refinement of XRD data. 

Sample a (Å) c (Å) V (Å3) Rwp, Rexp, Rp, 
GOF 

MFN-A 

2.8987 ± 
0.0002 

16.772 ± 
0.001 

122.05 ± 
0.02 

3.62, 3.20, 2.87, 
1.13 

2.9407 ± 
0.0001 

16.434 ± 
0.001 

123.08 ± 
0.01 

MFN-B 

2.9092 ± 
0.0006 

16.733 ± 
0.003 

122.65 ± 
0.06 

3.78, 3.21, 2.94, 
1.17 

2.9011 ± 
0.0005 

11.168 ± 
0.001 81.40 ± 0.03 

MFN-C 

2.8958 ± 
0.0002 

16.757 ± 
0.002 

121.69 ± 
0.02 

4.33, 3.78, 3.44, 
1.14 

2.9553 ± 
0.0003 

16.192 ± 
0.002 

122.479 ± 
0.035 

MFN-D 

2.8955 ± 
0.0002 

16.798 ± 
0.001 

121.96 ± 
0.02 2.91, 2.47, 2.29, 

1.17 2.8978 ± 
0.0002 

11.172 ± 
0.001 81.25 ± 0.01 

MFN-E 

2.8945 ± 
0.0004 

16.651 ± 
0.001 

120.82 ± 
0.04 

4.40, 3.48, 3.43, 
1.26 

2.8944 ± 
0.0001 

11.1462 ± 
0.0007 

80.872 ± 
0.008 

2.8889 ± 
0.0004 

15.984 ± 
0.003 

115.53 ± 
0.04 

MFN-F 

2.8923 ± 
0.0001 

16.767 ± 
0.001 

121.47 ± 
0.01 

3.55, 2.72, 2.68, 
1.30 

2.8916 ± 
0.0001 

11.178 ± 
0.006 80.94 ± 0.04 

2.953 ± 0.001 16.063 ± 
0.005 

121.35 ± 
0.09 
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MFN-G 

2.8901 ± 
0.0001 

16.786 ± 
0.001 

121.43 ± 
0.01 

3.08, 2.58, 2.40, 
1.19 

2.8905 ± 
0.0001 

11.143 ± 
0.002 80.63 ± 0.01 

2.8863 ± 
0.0003 

16.026 ± 
0.002 

115.63 ± 
0.03 
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Table S3 Lattice parameters of the MFN samples calcined at 800℃ obtained from the Rietveld 

refinement of XRD data. 

Sample a (Å) c (Å) V (Å3) 
Rwp, Rexp, Rp, 

GOF 

MFN-A 

2.90893 ± 

0.00003 

11.1412 ± 

0.0002 

81.645 ± 

0.002 2.68, 2.33, 2.08, 

1.15 2.94438 ± 

0.00007 

16.3830 ± 

0.0006 

123.003 ± 

0.008 

MFN-B 
2.9018 ± 

0.0002 

11.1914 ± 

0.0008 
81.61 ± 0.01 

2.72, 2.29, 2.10, 

1.18 

MFN-C 

2.8978 ± 

0.0004 

16.706 ± 

0.002 

121.49 ± 

0.03 

2.99, 2.63, 2.34, 

1.13 

2.90406 ± 

0.00008 

11.0887 ± 

0.0005 

80.989 ± 

0.006 

2.94791 ± 

0.00009 

6.220 ± 

0.001 

122.07 ± 

0.01 

MFN-D 
2.89720 ± 

0.00004 

11.1687 ± 

0.0003 

81.188 ± 

0.003 

3.11, 2.54, 2.38, 

1.22 

MFN-E 

2.89772 ± 

0.00008 

11.1693 ± 

0.0006 

81.221 ± 

0.007 3.31, 2.47, 2.47, 

1.33 2.8896 ± 

0.0002 

16.014 ± 

0.002 

115.80 ± 

0.02 

MFN-F 

2.8904 ± 

0.0003 

16.749 ± 

0.002 

121.18 ± 

0.03 3.44, 2.87, 2.70, 

1.19 2.89446 ± 

0.00009 

11.1344 ± 

0.0004 

80.786 ± 

0.006 
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2.9462 ± 

0.0004 

16.131 ± 

0.004 

121.26 ± 

0.05 

MFN-G 

2.89001 ± 

0.00005 

11.1466 ± 

0.0004 

80.626 ± 

0.004 3.39, 2.75, 2.65, 

1.23 2.8910 ± 

0.0004 

16.019 ± 

0.003 

115.95 ± 

0.04 
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Table S4 Lattice parameters of the MFN samples calcined at 900℃ obtained from the Rietveld 

refinement of XRD data. 

Sample a (Å) c (Å) V (Å3) 
Rwp, Rexp, Rp, 

GOF 

MFN-A 

2.91143 ± 

0.00002 

11.1338 ± 

0.0001 

81.732 ± 

0.002 2.95, 2.27, 2.20, 

1.29 2.94614 ± 

0.00008 

16.3622 ± 

0.0006 

122.993 ± 

0.008 

MFN-B 
2.90624 ± 

0.00008 

11.1988 ± 

0.0005 

81.916 ± 

0.007 

2.71, 2.27, 2.11, 

1.19 

MFN-C 

2.90546 ± 

0.00004 

11.0886 ± 

0.0002 

81.067 ± 

0.003 3.52, 2.55, 2.62, 

1.38 2.94540 ± 

0.00007 

16.2314 ± 

0.0007 

121.949 ± 

0.008 

MFN-D 
2.89720 ± 

0.00003 

11.1773 ± 

0.0002 

81.251 ± 

0.003 

3.15, 2.50, 2.34, 

1.25 

MFN-E 

2.90065 ± 

0.00008 

11.1719 ± 

0.0006 

81.405 ± 

0.007 3.23, 2.48, 2.46, 

1.30 2.8891 ± 

0.0002 

16.030 ± 

0.003 

115.88 ± 

0.03 

MFN-F 

2.89362 ± 

0.00004 

11.1291 ± 

0.0003 

80.701 ± 

0.004 3.82, 2.68, 2.84, 

1.42 2.9286 ± 

0.0004 

16.301 ± 

0.004 

121.08 ± 

0.05 

MFN-G 
2.88648 ± 

0.00004 

11.1614 ± 

0.0004 

80.535 ± 

0.004 

3.50, 2.62, 2.59, 

1.33 
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2.957 ± 0.003 16.02 ± 0.02 121.3 ± 0.3 
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Table S5 Lattice parameters of the MFN samples calcined at 1000℃ obtained from the Rietveld 

refinement of XRD data. 

Sample a (Å) c (Å) V (Å3) 
Rwp, Rexp, Rp, 

GOF 

MFN-A 
2.91124 ± 

0.00002 

11.1578 ± 

0.0001 

81.897 ± 

0.002 

2.38, 1.87, 1.80, 

1.27 

MFN-B 
2.91044 ± 

0.00005 

11.2139 ± 

0.0004 

82.264 ± 

0.004 

2.60, 1.92, 1.93, 

1.35 

MFN-C 

2.90599 ± 

0.00005 

11.1011 ± 

0.0003 

81.187 ± 

0.004 

3.68, 2.01, 2.34, 

1.82 

2.93049 ± 

0.00004 

16.3665 ± 

0.0005 

121.722 ± 

0.005 

4.1865 ± 

0.0003 
- 73.38 ± 0.02 

MFN-D 
2.89854 ± 

0.00003 

11.1777 ± 

0.0002 

81.329 ± 

0.003 

2.62, 2.04, 1.97, 

1.28 

MFN-E 
2.90205 ± 

0.00007 

11.1968 ± 

0.0006 

81.665 ± 

0.006 

2.28, 1.94, 1.76, 

1.17 

MFN-F 
2.89366 ± 

0.00005 

11.1389 ± 

0.0004 

80.767 ± 

0.004 

2.98, 2.28, 2.28, 

1.30 

MFN-G 
2.88877 ± 

0.00008 

11.1701 ± 

0.0005 

80.727 ± 

0.006 

3.08, 2.14, 2.22, 

1.44 
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Tables S6-S33 Crystallographic parameters of MFN samples calcined at different temperatures 

obtained from Rietveld refinement of room temperature XRD data. 

S6: MFN-A-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 3a 

O1 0 0 0.396±0.002 1.00 3a 

O2 0 0 0.604±0.002 1.00 3a 

O3 (Space Group: R𝟑̅m) 

Atom x y z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 3a 

O 0 0 0.269±0.001 1 6c 

S7: MFN-B-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.64/0.25/0.11 3a 

O1 0 0 0.402±0.004 1.00 3a 

O2 0 0 0.598±0.004 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.25/0.11 2a 

O 2/3 1/3 0.095±0.001 1 4f 

S8: MFN-C-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 
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Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O1 0 0 0.397±0.003 1.00 3a 

O2 0 0 0.603±0.003 1.00 3a 

O3 (Space Group: R𝟑̅m) 

Atom x y z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O 0 0 0.274±0.005 1 6c 

S9: MFN-D-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.64/0.14/0.22 3a 

O1 0 0 0.399±0.002 1.00 3a 

O2 0 0 0.601±0.002 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.14/0.22 2a 

O 2/3 1/3 0.097±0.002 1 4f 

S10: MFN-E-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 3a 

O1 0 0 0.400±0.005 1.00 3a 

O2 0 0 0.600±0.005 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 
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Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 2a 

O 2/3 1/3 0.098±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 3a 

O 0 0 0.299±0.003 1 6c 

S11: MFN-F-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 3a 

O1 0 0 0.400±0.004 1.00 3a 

O2 0 0 0.600±0.004 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 2a 

O 2/3 1/3 0.092±0.002 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 3a 

O 0 0 0.274±0.004 1 6c 

S12: MFN-G-700 

P3 (Space Group: R3m) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 3a 
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O1 0 0 0.401±0.004 1.00 3a 

O2 0 0 0.599±0.004 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 2a 

O 2/3 1/3 0.093±0.002 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 3a 

O 0 0 0.256±0.004 1 6c 
 

S13: MFN-A-800 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 3a 

O 0 0 0.269±0.002 1 6c 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 2a 

O 2/3 1/3 0.096±0.001 1 4f 

S14: MFN-B-800 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 
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Mn/Fe/Ni 0 0 0 0.64/0.25/0.11 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S15: MFN-C-800 

P3 (Space Group: R3m) 

Atom x y Z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O1 0 0 0.397±0.003 1.00 3a 

O2 0 0 0.603±0.003 1.00 3a 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O 0 0 0.274±0.005 1 6c 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 2a 

O 2/3 1/3 0.094±0.001 1 4f 

S16: MFN-D-800 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.14/0.22 2a 

O 2/3 1/3 0.099±0.001 1 4f 

S17: MFN-E-800 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 
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Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 2a 

O 2/3 1/3 0.099±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 3a 

O 0 0 0.27±0.02 1 6c 

S18: MFN-F-800 

P3 (Space Group: R3m) 

Atom x y Z Occupancy Site 

Na 0 0 0.17 0.8 3a 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 3a 

O1 0 0 0.400±0.006 1.00 3a 

O2 0 0 0.600±0.006 1.00 3a 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 2a 

O 2/3 1/3 0.096±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 3a 

O 0 0 0.271±0.001 1 6c 

S19: MFN-G-800 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 
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Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 2a 

O 2/3 1/3 0.097±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 3a 

O 0 0 0.27±0.05 1 6c 

 
S20: MFN-A-900 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 3a 

O 0 0 0.269±0.001 1 6c 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 2a 

O 2/3 1/3 0.095±0.001 1 4f 

S21: MFN-B-900 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.25/0.11 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S22: MFN-C-900 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 
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Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O 0 0 0.270±0.001 1 6c 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 2a 

O 2/3 1/3 0.094±0.001 1 4f 

S23: MFN-D-900 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.14/0.22 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S24: MFN-E-900 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 2a 

O 2/3 1/3 0.099±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 3a 

O 0 0 0.31±0.01 1 6c 

S25: MFN-F-900 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 
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Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 2a 

O 2/3 1/3 0.097±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 3a 

O 0 0 0.27±0.02 1 6c 

S26: MFN-G-900 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 2a 

O 2/3 1/3 0.099±0.001 1 4f 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 3a 

O 0 0 0.23±0.01 1 6c 

 
S27: MFN-A-1000 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.25/0.22 2a 

O 2/3 1/3 0.096±0.001 1 4f 

S28: MFN-B-1000 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 
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Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.25/0.11 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S29: MFN-C-1000 

O3 (Space Group: R𝟑̅m) 

Atom x y Z Occupancy Site 

Na1 0 0 ½ 0.8 3b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 3a 

O 0 0 0.270±0.001 1 6c 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.53/0.14/0.33 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S30: MFN-D-1000 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.14/0.22 2a 

O 2/3 1/3 0.098±0.001 1 4f 

S31: MFN-E-1000 

P2 (Space Group : P63/mmc) 

Atom x y Z Occupancy Site 

Na1 2/3 1/3 ¼ 0.5 2d 

Na2 0 0 ¼ 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.14/0.11 2a 

O 2/3 1/3 0.099±0.001 1 4f 

S32: MFN-F-1000 
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P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.64/0.03/0.33 2a 

O 2/3 1/3 0.099±0.001 1 4f 

S33: MFN-G-1000 

P2 (Space Group : P63/mmc) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.5 2d 

Na2 0 0 1/4 0.3 2b 

Mn/Fe/Ni 0 0 0 0.75/0.03/0.22 2a 

O 2/3 1/3 0.099±0.001 1 4f 
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Table S34 A comparison of the electrochemical performance of MFN samples calcined at 700 

℃. 

Sample 

Specific 

Capacity at 

0.1C 

(mAh g-1) 

Average 

voltage 

(V) 

Capacity 

retention at 

0.2C (of the 

capacity at 

0.1C) (%) 

Capacity 

retention at 1C 

(of the capacity 

at 0.1C) (%) 

Capacity 

retention (%) 

after 50 cycles 

MFN-A 132.7 3.44 90 69 86.5 

MFN-D 124.5 3.58 93 74 89.6 

MFN-C 121.6 3.39 95 73 83.4 

MFN-B 114.2 3.51 85 62 82.5 

MFN-G 110.4 3.49 91 51 84.2 

MFN-F 96.2 3.48 90 60 80.4 

MFN-E 90.1 3.42 83 71 90.7 
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Table S35 A comparison of the electrochemical performance of MFN samples calcined at 800 

℃. 

Sample 

Specific 

Capacity at 

0.1C 

(mAh g-1) 

Average 

voltage 

(V) 

Capacity 

retention at 

0.2C (of the 

capacity at 

0.1C) (%) 

Capacity 

retention at 1C 

(of the capacity 

at 0.1C) (%) 

Capacity 

retention (%) 

after 50 cycles 

MFN-A 134.2 3.48 90 66 87.6 

MFN-C 131.9 3.40 94 72 76.7 

MFN-D 127.3 3.60 92 67 88.3 

MFN-B 109.6 3.45 82 56 77.8 

MFN-F 113.3 3.51 89 64 75.2 

MFN-G 94.7 3.54 91 63 81.4 

MFN-E 89.7 3.42 87 63 80.7 
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Table S36 A comparison of the electrochemical performance of MFN samples calcined at 900 

℃. 

Sample 

Specific 

Capacity at 

0.1C 

(mAh g-1) 

Average 

voltage 

(V) 

Capacity 

retention at 

0.2C (of the 

capacity at 

0.1C) (%) 

Capacity 

retention at 1C 

(of the capacity 

at 0.1C) (%) 

Capacity 

retention (%) 

after 50 cycles 

MFN-C 139.1 3.50 83 52 72.2 

MFN-A 120.7 3.49 83 37 80.0 

MFN-D 119.9 3.56 81 43 89.7 

MFN-F 110.8 3.57 84 37 53.8 

MFN-B 108.8 3.57 77 36 85.5 

MFN-G 107.5 3.63 82 39 78.4 

MFN-E 89.1 3.37 73 31 83.1 
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Table S37 A comparison of the electrochemical performance of MFN samples calcined at 

1000℃. 

Sample 

Specific 

Capacity at 

0.1C 

(mAh g-1) 

Average 

voltage 

(V) 

Capacity 

retention at 

0.2C (of the 

capacity at 

0.1C) (%) 

Capacity 

retention at 1C 

(of the capacity 

at 0.1C) (%) 

Capacity 

retention (%) 

after 50 cycles 

MFN-C 126.7 3.26 63 25 36.7 

MFN-A 123.1 3.51 71 25 71.9 

MFN-D 121.1 3.56 80 30 52.0 

MFN-F 111.1 3.53 79 25 22.7 

MFN-G 96.4 3.69 70 32 61.8 

MFN-E 84.7 3.25 78 28 35.8 

MFN-B 79.6 3.36 58 10 21.7 
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Fig. S1. (a) XRD patterns of the MFN samples calcined at 700 ℃. (a1) and (a2) Magnified 

view of the characteristic peaks of P3, P2, and O3 phases. 
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Fig. S2. (a) XRD patterns of the MFN samples calcined at 800 ℃. (a1) and (a2) Magnified 

view of the characteristic peaks of P3, P2, and O3 phases. 
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Fig. S3. (a) XRD patterns of the MFN samples calcined at 900℃. (a1) and (a2) Magnified 

view of the characteristic peaks of P2 and O3 phases. 
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Fig. S4. (a) XRD patterns of the MFN samples calcined at 1000 ℃. (a1) and (a2) Magnified 

view of the characteristic peaks of P2 and O3 phases. 
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Fig. S5. (a) Rietveld refined patterns of MFN samples calcined at 700 ℃, (a1) Magnified view 

of the most intense peak of P3, P2, and O3 phases.  
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Fig. S6. (a) Rietveld refined patterns of MFN samples calcined at 900 ℃, (a1) Magnified view 

of the most intense peak of P2 and O3 phases.  
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Fig. S7. (a) Rietveld refined patterns of MFN samples calcined at 1000 ℃, (a1) Magnified 

view of the most intense peak of P2 and O3 phases. 
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Fig. S8. (a) SEM micrograph of MFN-D sample calcined at 800℃. (b) EDS mapping 

indicating uniform distribution of constituent elements. 
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Fig. S9. (a) SEM micrograph of MFN-E sample calcined at 800℃. (b) EDS mapping 

indicating uniform distribution of constituent elements. 
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Fig. S10. (a) Galvanostatic charge-discharge curves at 0.1C, (b) dQ/dV vs. V profiles, (c) rate 

performance, and (d) cyclic stability of MFN samples calcined at 700℃. 
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Fig. S11. (a) Galvanostatic charge-discharge curves at 0.1C, (b) dQ/dV vs. V profiles, (c) rate 

performance, and (d) cyclic stability of MFN samples calcined at 900℃. 
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Fig. S12. (a) Galvanostatic charge-discharge curves at 0.1C, (b) dQ/dV vs. V profiles, (c) rate 

performance, and (d) cyclic stability of MFN samples calcined at 1000℃. 
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Fig. S13. Cyclic stability of MFN-C-800, MFN-D-800, and MFN-E-800 at 1C. 
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Fig. S14. (a) Operando synchrotron XRD patterns of MFN-E. (b) The corresponding GCD 

curve showing various states of charge/discharge. Color contour maps highlighting (c) (002), 

(d) (100), and (e) (102) peaks of the P2 phase of MFN-E. Variation in (f) a parameter and (g) c 

parameter of the P2 phase during charge/discharge.  
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Fig. S15. XRD patterns of the MFN-D powder calcined at 800 ℃ before and after being 

exposed to air. 
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Fig. S16. XRD patterns of the MFN-E powder calcined at 800 ℃ before and after being 

exposed to air. 
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Fig. S17. Bar graphs comparing the (a) specific capacity, (b) rate performance, and (c) 

cyclability of various MFN cathodes at different calcination temperatures.  
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