Publications

 

International Journals


Research Area: Bluff body flows
  1. Z. Zheng, M.M. Alam, M. Islam and S. Dhinakaran (2022). Topology of Flow and Heat Transfer from Prisms in Square Array. International Journal of Mechanical Sciences (Elsevier), 220 (15), 107163.


  2. R.S. Rajpoot, K. Anirudh and S. Dhinakaran (2021). Numerical investigation of unsteady flow across tandem square cylinders near a moving wall at Re = 100Case Studies in Thermal Engineering (Elsevier), 26, 101042.

  3.  R.S. Rajpoot, K. Anirudh and SDhinakaran (2021). On the effects of orientation on flow and heat transfer from a semi-circular cylinder near a stationary wall. Case Studies in Thermal Engineering (Elsevier), 26, 100967.


  4. S. Dhinakaran (2011). Heat transport from a bluff body near a moving wall at Re =100International Journal of Heat and Mass Transfer (Elsevier), 54, 5444-5458. VIEW PDF   

  5. S. Bhattacharyya and S. Dhinakaran (2008). Vortex shedding in shear flow past tandem square cylinders in the vicinity of a plane wallJournal of Fluids and Structures (Elsevier), 24, 400 - 417. VIEW PDF   

  6. S. Bhattacharyya, D.K. Maiti and S. Dhinakaran (2006). Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in proximity to a wall. Numerical Heat Transfer, Part A (Taylor & Francis). 50, 585 - 606.  VIEW PDF    



Research Area:
 Heat and Mass Transfer in Porous Media

  1. B. Shruti, and S. Dhinakaran (2024). Lattice Boltzmann modeling of buoyant convection in an enclosure with differentially heated porous cylinders. Thermal Science and Engineering Progress (In Press)
  2. B. Shruti, M.M. Alam, A. Parkash and S. Dhinakaran (2023). Darcy number influence on the natural convection around porous cylinders in an enclosure: LBM study, Case Studies in Thermal Engineering, 45, 102907.

  3. B. Shruti, M.M. Alam, A. Parkash and S. Dhinakaran (2022). LBM study of natural convection heat transfer from a porous cylinder in an enclosureTheoretical and Computational Fluid Dynamics, 36, 943 - 947 (View)
  4. K. Anirudh, and S. Dhinakaran (2021). Numerical analysis of the performance improvement of a flat-plate solar collector using conjugated porous blocksRenewable Energy (Elsevier), 172, 382-391 (View)
  5. K. Anirudh, and S. Dhinakaran (2020).  Numerical study on performance improvement of a flat-plate solar collector filled with porous foamRenewable Energy (Elsevier), 147, 1-14. (Link)
  6. K. Anirudh, and S. Dhinakaran (2020).  Performance improvement of a flat-plate solar collector by inserting intermittent porous blocksRenewable Energy (Elsevier), 145, 428-441. (Link)

  7. K. Anirudh, and S. Dhinakaran (2018).  Effects of Prandtl number on the forced convection heat transfer from a porous square cylinderInternational Journal of Heat and Mass Transfer (Elsevier), 126, 1358-1375. LINK

  8. K. Anirudh, and S. Dhinakaran (2018).  On the vortex shedding and unsteady flow past a two-dimensional porous square cylinderJournal of Wind Engineering and Industrial Aerodynamics (Elsevier), 179, 200-214.
  9. T.R. Vijaybabu, K. Anirudh, and S. Dhinakaran (2018). LBM simulations of unsteady flow and heat transfer from a diamond-shaped porous cylinderInternational Journal of Heat and Mass Transfer (Elsevier), 130, 267 -283.
  10. T.R. Vijaybabu, K. Anirudh, and S. Dhinakaran (2018). Lattice Boltzmann simulations of flow and heat transfer from a permeable triangular cylinder under the influence of aiding buoyancyInternational Journal of Heat and Mass Transfer (Elsevier), 117, 899 - 917. 

  11. T.R. Vijaybabu, K. Anirudh and S. Dhinakaran (2017). Mixed convective heat transfer from a permeable square cylinder: A lattice Boltzmann analysis. International Journal of Heat and Mass Transfer (Elsevier), 115, 854 - 870. VIEW PDF
  12. S. Dhinakaran and J. Ponmozhi (2011). Heat transfer from a permeable square cylinder to a flowing fluid. Energy Conversion and Management (Elsevier), 52(5), 2170-2182.    VIEW PDF  
  13. S. Bhattacharyya and S. Dhinakaran (2006). Fluid motion around and through a porous cylinderChemical Engineering Science (Elsevier), 61, 4451-4461.    VIEW PDF
     


Research Area: Nanofluids
  1. R.S. Rajpoot, S. Dhinakaran and M.M. Alam (2021). Numerical analysis of mixed convective heat transfer from a square cylinder utilizing nanofluids with multi-phase modelling approach. Energies, 14(17), 5485.
  2. T.R. Vijaybabu and S. Dhinakaran (2019). MHD natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3 − H2O nanofluid: An LBM study, International Journal of Mechanical Sciences (Elsevier), 153-154, 500-516.
  3. R.D.S. Kumar and S. Dhinakaran (2017). Heat transfer and particle migration in nanofluid flow around a circular bluff body using a two-way coupled Eulerian-Lagrangian approach. International Journal of Heat and Mass Transfer (Elsevier), 115, 282 - 293  VIEW PDF
  4. R.D.S. Kumar and S. Dhinakaran (2017). Effective viscosity of nanofluids — A modified Krieger–Dougherty model based on particle size distribution (PSD) analysisJournal of Molecular Liquids (Elsevier),  225, 20 - 27. VIEW PDF
  5. R.D.S. Kumar and S. Dhinakaran (2017). Forced convective heat transfer of nanofluids around a circular bluff body with the effects of slip velocity using a multiphase mixture modelInternational Journal of Heat and Mass Transfer (Elsevier), 106, 816-828. VIEW PDF
  6. R.D.S. Kumar and S. Dhinakaran (2016). Nanofluid flow and heat transfer around a circular cylinder: A study on effects of uncertainties in effective properties. Journal of Molecular Liquids (Elsevier), 223, 572 - 588. VIEW PDF
  7. R.D.S. Kumar and S. Dhinakaran (2016). A multilevel homogenization model for the thermal conductivity of nanofluids based on Particle Size Distribution (PSD) analysisPowder Technology (Elsevier), 301, 310 - 317. VIEW PDF

Research Area: Non-Newtonian Fluid mechanics
  1. S. Dhinakaran, M.S.N. Oliveira, F.T. Pinho and M.A. Alves (2013). Steady flow of power-law fluids in a 1:3 sudden expansionJournal of Non-Newtonian Fluid Mechanics (Elsevier), 198, 48-58.   

  2. S. Dhinakaran, A.M. Afonso, M.A. Alves and F.T. Pinho (2010). Steady flow of viscoelastic fluids between parallel plates under electro-osmotic forces: Phan-Thien-Tanner modelJournal of Colloid and Interface Science (Elsevier), 344, 513 - 520.